首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emulsion polymerization of styrene with three different chain transfer agents (CTAs) based on irreversible addition–fragmentation chain transfer (AFCT) mechanism was first reported in this work. The influences of these irreversible AFCT agents on the rate of polymerization, particle size, and molecular weight were investigated. It was found that the intrinsic activity and desorption behaviors of the CTAs determined the efficiency for molecular weight control, rate of polymerization, and particle size in the emulsion polymerization. It has been demonstrated that the rate of polymerization and particle size decreased dramatically in the presence of the irreversible AFCT agents with high chain transfer constant (ethyl α-p-toluenesulfonyl-methacrylate), meanwhile, the molecular weight of the polystyrene could not be controlled well, whereas the irreversible AFCT agents with low chain transfer constant (butyl(2-phenylallyl)sulfane and 2,3-dichloropropene) had a slight effect on the polymerization rate, particle size, and were fairly well for molecular weight control over the whole conversion range in the emulsion polymerization of styrene. The average number of radicals per particle and the number-average molecular weight were calculated by classical radical emulsion polymerization theory, and the experimental results were in good agreement with the results of model calculations, when the irreversible AFCT agents were used as CTAs. The effect of chain transfer agents on the kinetics and nucleation in the emulsion polymerization of styrene can be attributed to desorption of chain-transferred radicals from the polymer particles. The results of this work show that butyl(2-phenylallyl)sulfane as CTA in emulsion polymerization of styrene provides the best balance between the rate of polymerization and the efficiency for molecular weight control conflicting tendencies.  相似文献   

2.
Summary: Interesting new CMC and phase separation data of carbohydrate-based self-assembling core-shell nanoparticles which were synthesized via the Reversible Addition-Fragmentation Transfer (RAFT) process. The macro-RAFT agent, poly(3-O- Methacryloyl-1,2:5,6-di-O-isopropylidene-D-glucofuranose) (PMAlpGlc), was prepared by RAFT polymerization of the glycomonomer with cumyl phenyl dithioacetate as the chain transfer agent. Chain extension with styrene and methyl acrylate afforded the diblock copolymers (PMAlpGlc-b-styrene and PMAlpGlc-b-methyl acrylate) having predetermined molecular weight and narrow molecular weight distributions. Acidolysis of these diblock copolymers were undertaken and confirmed by NMR. Core-shell nanoparticles were observed by TEM.  相似文献   

3.
A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) poly-merization and characterized by 1H NMR and gel permeation chromatography. Multirespon-sive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric sta-bilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical param-eter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.  相似文献   

4.
Here we report, synthesis of different molecular weight poly (styrene sulfonate) based macro-RAFT agents and their use as shell material in surfactant-free emulsion polymerization of styrene. Concentration and molecular weight of hydrophilic macro-RAFT agent has an influence on colloidal stability, particle size distribution and self-assembly. Microscopic and zeta-potential studies of colloids reveal that, the macro-RAFT agents used with low molecular weight (Mn = 1200) are comparable more efficient than high molecular weight (Mn = 46,800 and 116,000) for imparting narrow particle size distribution with good colloidal stability.  相似文献   

5.
The synthesis of core-shell type polystyrene monodisperse particles with surface acetal groups was carried out by a two-step emulsion polymerization process. In a first step, the core was synthesized by batch emulsion polymerization of styrene (St), and in the second step, the shell was polymerized by batch emulsion terpolymerization of styrene, methacrylic acid (MAA), and methacrylamidoacetaldehyde dimethyl acetal (MAAMA), using the seed obtained previously. With the aim of analyzing the effect of the thickness of the shell, the pH of the reaction medium and the weight ratio of the termonomers to prepare the shell, on the amount of the functionalized groups, several core-shell type latex particles were synthesized by two-step emulsion polymerization in a batch reactor. The latexes were characterized by TEM and conductimetric titration to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. Looking for the applicability of the synthesized latexes in immunoassays, IgG a-CRP rabbit antibody was covalently bonded to the surface of the particles synthesized in neutral medium. The complex latex-protein was immunologically active against the CRP antigen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1605–1610, 1997  相似文献   

6.
The surface-active, chain transfer agent (‘transurf’) sodium ω-mercapto-decane sulfonate, SMDSo, was synthesized, purified, and its interfacial properties determined. The compound acted normally in styrene emulsion polymerization to produce extremely stable colloids containing only sulfonate ionic surface functional groups. It was then used to control the surface charge density of a model polystyrene colloid by means of seeded emulsion polymerization. Surface charge could thus be increased 16-fold over that of the seed particles, and was due solely to sulfonate groups introduced by the SMDSo. Unlike most conventional emulsion polymerizations, this technique allows one to control surface chemistry independently of particle size. To cite this article: C.C. Fifield, R.M. Fitch, C. R. Chimie 6 (2003).  相似文献   

7.
Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.  相似文献   

8.
Polystyrene core microspheres of narrow-size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Polystyrene/polychloromethylstyrene and polystyrene/poly(chloromethylstyrene-divinylbenzene) core-shell microspheres of narrow-size distribution were prepared by seeded emulsion polymerization of chloromethylstyrene or chloromethylstyrene and divinylbenzene in the presence of the polystyrene core microspheres at 71 °C. Core-shell particles with different properties (size, surface morphology, and composition) have been prepared by changing various parameters belonging to the emulsion polymerization process, e.g., volume of the chloromethylstyrene and the volume ratio of chloromethylstyrene to divinylbenzene. Dissolution of the polystyrene core of the polystyrene/poly(chloromethylstyrene-divinylbenzene) core-shell particles resulted in the formation of crosslinked hollow polychloromethylstyrene microspheres, broken crosslinked polychloromethylstyrene shells, or particles containing voids, depending on the composition of the polystyrene/poly(chloromethylstyrene-divinylbenzene) particles.  相似文献   

9.
分别以过氧化二苯甲酰 (BPO)和过硫酸钾 (KPS)为引发剂、1 ,1 0 邻二氮菲为催化剂配体、十二烷基磺酸钠为乳化剂 ,在水分散体系中进行了苯乙烯的反向原子转移自由基聚合反应 .结果表明 ,对于BPO引发的苯乙烯乳液聚合反应 ,必须由CuBr和CuBr2 形成复合催化剂体系才能达到较好的控制效果 ,其中CuBr可以是直接加入到催化剂体系中 ,也可以是由CuBr2 与Cu0 就地快速反应生成 .CuBr迅速地与BPO反应而实现活性聚合中所谓的“快引发” ,从而有效地控制苯乙烯的聚合反应 .对于KPS引发的苯乙烯乳液聚合体系 ,反应介质的pH值对聚合有很大的影响 ,反应速度随着反应介质pH值的升高而加快 .实验结果表明 ,由两种不同引发剂引发的苯乙烯的乳液的粒径及粒径分布也有很大的差异  相似文献   

10.
The synthesis of core-shell type polystyrene monodisperse particles with surface chloromethyl groups was carried out by a two-step emulsion polymerization process at different reaction temperatures. In a first step, the core was synthesized at 90 °C by means of batch emulsion polymerization of styrene (St), and in the second step, the shell was polymerized by batch emulsion copolymerization of St and chloromethylstyrene (CMS) using the seed obtained previously. With the aim of optimizing the production of these core-shell type polystyrene monodisperse particles with surface chloromethyl groups, the reaction temperature in the second step, the purification or not of the functionalized monomer (CMS), the amount and type of the redox initiator system used, and the type of addition of the initiator system to the reactor were studied.  相似文献   

11.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

12.
Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid)were synthesized by iodide- mediated radical polymerization.Firstly,free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate)as chain transfer agent,giving iodine atom ended star-shaped polystyrene with three arm chains,R(polystyrene)_3.Secondly,tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent,and star-block copolymer,R(polystyrene-b-poly(tert-butyl acrylate))_3 with controlled molecular weight was obtained.Finally,amphiphilic star-block copolymer,R(polystyrene-b-poly(acrylic acid))_3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))_3 under acidic condition.  相似文献   

13.
Monodisperse emulsion copolymer was synthesized by semi-continuous core-shell emulsion polymerization of styrene, butyl acrylate and γ-methacryloxypropyl trimethoxy silane(KH570). The emulsion particles size and its polydispersion were measured by dynamic light scattering(DLS). The properties of emulsion copolymer were characterized by differential scanning calorimetry(DSC), thermogravimetric analysis(TGA) and measurement of contact angle. The particle morphology was observed under a transmission electron microscope(TEM) and atomic force microscopy(AFM). The results indicate that emulsion nanoparticles containing silicon possess core-shell structures and narrow polydispersity(PDI≤0.08). The thermal stability and hydrophobicity of emulsion copolymer were improved with KH570 introduced into the system.  相似文献   

14.
ZnO/polystyrene composite particles were synthesized by Pickering emulsion polymerization. ZnO nanoparticles were first prepared by reaction of zinc acetate and sodium hydroxide in ethanol medium. Then different amount of styrene monomer was emulsified in water in the presence of ZnO nanoparticles either by mechanical stirring or by sonication, followed by polymerization of styrene. Two kinds of initiators were used to start the polymerization, azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). The X-ray diffraction pattern verified the crystal structure of ZnO and FT-IR spectra evidenced the existence of ZnO and polystyrene (PS) in ZnO/polystyrene composite particles. Different morphologies were observed for the composite particles when using different initiators. From TEM photographs, AIBN-initiated system produced mainly core-shell composite particles with PS as core and ZnO as shell, while KPS-initiated system showed both composite particles and pure PS particles. Two schemes of reaction mechanism were proposed to explain the morphologies accordingly. Both systems of composite particles showed good pH adjusting ability.  相似文献   

15.
Polymerizable surfactants (surfmers) 12-acryloyloxy-dodecanoic acid and 11-acrylamidoundecanoic acid and their respective sodium salts were prepared and then polymerized to form their corresponding oligomers using reversible addition-fragmentation chain transfer (RAFT). Different concentrations of both the surfmers, their sodium salts, and their RAFT oligomers were used as polysoaps in the emulsion polymerization of styrene. Stabilities of the pre-emulsions before polymerization were determined and compared. After polymerization, particle sizes and polydispersities of the resulting polystyrene latices were determined. Sodium dodecyl sulfate (SDS) was used as a reference surfactant to compare the particle sizes and stabilities of the pre-emulsions prepared using surfmers and polymeric surfactants (polysoaps) as particle stabilizers. Emulsion polymerization of styrene using these surfmers and polysoaps all led to latices which were stable for a period of more than six months, as indicated by constant particle sizes, whereas latices prepared using the conventional surfactant, SDS, were not as stable.  相似文献   

16.
S‐allyl‐4‐methyldithiobenzoate was synthesized and used as a chain transfer agent for the RAFT polymerization of butyl acrylate to produce a functionalized acrylic rubber. A solution of 8 wt% of this functionalized rubber was prepared in styrene and polymerized to generate a material called acrylic rubber‐modified polystyrene (AMP) constituted by well‐dispersed particles of poly(butyl acrylate)‐block‐poly(styrene) into a polystyrene matrix. Impact strength of injection‐molded samples of AMP was measured and compared with the general purpose polystyrene (GPPS) and the high impact polystyrene (HIPS). AMP itself showed an impact strength value similar to GPPS; however, when AMP was blended with conventional HIPS, the resulting material exhibited an improvement of 76–91% as compared to HIPS by itself, without affecting negatively tensile properties. Transmission electron microscopy analysis revealed both kinds of dispersed phases, i.e. the typical salami particles of polybutadiene coming from HIPS (size: 0.5–2 µ) and small particles from poly(butyl acrylate)‐block‐poly(styrene) (size: ~50 nm). We clearly showed that such a bimodality of the particle size distribution caused the positive synergistic effect on impact strength. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This work reports the morphology of two-phase latex particles prepared by semi-continuous seed emulsion polymerization of styrene in the presence of polar poly(methyl methacrylate), PMMA, seed particles, using different conditions of non-polar styrene feed rate, rate of initiation, seed particle concentration and temperature of polymerization.The expected latex particle morphology at thermodynamic equilibrium is an inverted core-shell structure where the non-polar polystyrene would form the core. However, depending on the set of process conditions used the morphology of the resulting two-phase particles varied from that of a pure core-shell structure, over intermediate structures in which a shell of PS surrounded a PMMA core containing an increasing number of PS phase domains, to a structure in which the entire PS phase was present as discrete PS phase domain, more or less evenly distributed in a matrix of PMMA.By the use of a caloirimetric reactor system the monomer concentration in the particles during the different polymerization experiments could be calculated by comparing the integral of the polymerization rate curve with the integral of the monomer feed rate. A comparison between particle morphology and the calculated concentration of plasticizing monomer in the polymerizing particles strongly suggested that the diffusivity of the entering oligo radicals determined by the difference between polymerization temperature and the glass transition temperature of the monomer-swollen core polymer is a key factor determining the morphology of two-phase particles prepared by semi-continuous seed emulsion polymerization.Two-phase particles with a true core-shell structure were obtained in experiments where the estimated glass transition temperature of the PMMA phase was only a few degrees below the polymerization temperature. The results show that such particles can be obtained under conditions of high as well as low styrene feed rates, provided that the rate of initiation is properly adjusted.  相似文献   

18.
A study has been carried out on the kinetics of persulfate-initiated emulsion polymerization of styrene in the presence of an anionic (oleate) or mixed anionic-nonionic emulsifier. In both cases it appears that Smith-Ewart kinetics are obeyed, i.e., there is a constant-rate period up to 40–50% conversion, during which there is a concomitant constant molecular weight development. The sharp increases in molecular weight with conversion reported by Grancio and Williams appear to be an artifact resulting from the use of an impure emulsifier (Triton X-100), which acts as a chain transfer agent to reduce the molecular weight by approximately an order of magnitude. Hence there does not appear to be any kinetic justification for assuming an inhomogeneous swollen latex particle (“core-shell” morphology), and normal thermodynamic considerations should still apply to this swelling phenomemon.  相似文献   

19.
Five well-defined polystyrene-block-polyoxyethylene copolymers were synthesized by anionic polymerization for use as stabilizers in the emulsion polymerization of styrene. The size of the blocks and their relative weight ratios to each other were the main variables. The molecular weights of the blocks varied from M?n = 1000–7000 for polystyrene, and M?w = 3000–9000 for polyoxyethylene. The results of the styrene emulsion polymerization with these block copolymers as stabilizers indicate that for efficient anchoring the block length need not be more than 10 monomer units, possibly even less, and that the polyoxyethylene block M?w = 3000 is just as capable of stabilizing the polystyrene particle as the higher molecular weight blocks. A very important factor was found to be the weight ratio of the two blocks: block copolymers with a polyoxyethylene content between 75 and 90 wt % were effective stabilizers for the emulsion polymerization of styrene © 1992 John Wiley & Sons, Inc.  相似文献   

20.
The effect a Co(II) based catalytic chain transfer agent (CCTA) has on the course of the polymerization and the product properties of an emulsion polymerization is governed by the intrinsic activity and the partitioning behavior of the catalyst. The effect on the conversion time history, the molecular weight distribution and the particle size distribution is evaluated in batch emulsion polymerization of methyl methacrylate for three different CCTAs, which cover a range of intrinsic activities and partitioning behaviors. It was demonstrated that radical desorption from the particle phase to the aqueous phase preceded by chain transfer is the main kinetic event controlling the course of the polymerization and the product properties in terms of the particle size distribution. The experimental results show that the aqueous phase solubility of the CCTA is the key parameter controlling the course of the polymerization and the particle size distribution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1038–1048, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号