首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reflectometric interference spectroscopy (RIfS) is a label-free, time-resolved technique, and suitable for detecting antibody–antigen interaction. This work describes a continuous flow biosensor for C-reactive protein (CRP), involving an effective immobilization method of a monoclonal antibody against CRP (anti-CRP) to achieve highly sensitive RIfS-based detection of CRP. The silicon nitride-coated silicon chip (SiN chip) for the RIfS sensing was first treated with trimethylsilylchloride (TMS), followed by UV-light irradiation to in situ generation of homogeneous silanols on the surface. Following amination by 3-aminopropyltriethoxysilane, carboxymethyldextran (CMD) was grafted, and subsequently, protein A was immobilized to create the oriented anti-CRP surface. The immobilization process of protein A and anti-CRP was monitored with the RIfS system by consecutive injections of an amine coupling reagent, protein A and anti-CRP, respectively, to confirm the progress of each step in real time. The sensitivity was enhanced when all of the processes were adopted, suggesting that the oriented immobilization of anti-CRP via protein A that was coupled with the grafted CMD on the aminated surface of TMS-treated SiN chip. The feasibility of the present sensing system was demonstrated on the detection of CRP, where the silicon-based inexpensive chips and the simple optical setup were employed. It can be applied to other target molecules in various fields of life science as a substitute of surface plasmon resonance-based expensive sensors.  相似文献   

2.
The potential of a label-free detection method, reflectometric interference spectroscopy (RIfS), for temperature-dependent DNA hybridisation experiments (for example in single nucleotide polymorphism (SNP) analysis) is investigated. Hybridisations of DNA, peptide nucleic acid (PNA), and locked nucleic acid (LNA) to a single stranded DNA were measured for several temperatures, and the melting curves and temperatures were calculated from the changes in optical thickness obtained. These measurements were performed by hybridising surface-immobilised single stranded oligomers with their complementary ssDNA or with ssDNA containing SNPs at different temperatures. DNA was compared to its analogue oligomers PNA and LNA due to their stability against nuclease. A comparison of melting temperatures demonstrated the higher binding affinities of the DNA analogues. Moreover, a continuous melting curve was obtained by first hybridising the functionalised surface with its complementary DNA at room temperature and then heating up in-flow. Measurement of the continuous melting curve was only possible due to the insensitivity of the RIfS method towards temperature changes. This is an advantage over other label-free detection methods, which are based on determining the refractive index.Dedicated to the memory of Wilhelm Fresenius.  相似文献   

3.
Hydrophobic polymer layers (3 μm) were spin-coated on Si or Ge plates and placed in a flow through gas chamber. FTIR reflection spectra of the layers were recorded showing the characteristic IR absorption bands of the polymer and the interference pattern generated by layered structure of the polymer film. Upon exposure of the polymer layer to gaseous analytes enrichment in the polymer film occurred. This was evidenced by the appearance of analyte specific absorption particular in the mid-IR part of the spectrum, as well as by a shift in the interference pattern across the whole spectrum. Qualitative information concerning the analyte was accessible in the mid-IR part of the spectrum, whereas quantitative assessment was obtained from the interference pattern. Polyetherurethane, polydimethylsiloxane, Makrolon® and polyisobutylene polymer layers were tested for such IR–RIfS measurements, whereas toluene, o-dichlorobenzene, m-xylene, ethyl acetate and cyclohexane were employed as analytes. There was no influence of water vapour neither on the IR absorptions nor the interference pattern as hydrophobic polymers were used.  相似文献   

4.
Nowadays, little technology exists that can monitor various water sources quickly and at a reasonable cost. The ultra-sensitive, fully automated and robust biosensor River Analyser (RIANA) is capable of detecting multiple organic targets rapidly and simultaneously at a heterogeneous assay format (solid phase: bulk optical glass transducers). Commercialization of such a biosensor requires the availability of commercial high-affinity recognition elements (e.g. antibodies) and suitable commercial haptens (modified target molecules) for surface chemistry. Therfore, testosterone was chosen as model analyte, which is also a task of common analytical methods like gas chromatography-mass spectrometry (GC-MS), because they have to struggle with detecting sub-nanogram per liter levels in environmental samples. The reflectometric interference spectroscopy (RIfS) was used to characterize the commercially available immunochemistry resulting in a high-affinity constant of 2.6 ± 0.3 × 109 mol−1 for the unlabeled antibody. After the labeling procedure, necessary for the TIRF-based biosensor, a mean affinity constant of 1.2 × 109 mol−1 was calculated out of RIfS (1.4 ± 0.4 × 109 mol−1) and TIRF (1.0 ± 0.3 × 109 mol−1) measurements.Thereafter, the TIRF-based biosensor setup was used to determine the steroidal hormone testosterone at real world samples without sample pre-treatment or sample pre-concentration. Results are shown for rapid and ultra-sensitive analyses of testosterone in aqueous samples with at a remarkable limit of detection (LOD) of 0.2 ng L−1. All real world samples, even those containing testosterone in the sub-nanogram per liter range (e.g. 0.9 ng L−1), could be determined with recovery rates between 70 and 120%. Therefore, the sensor system is perfectly suited to serve as a low-cost system for surveillance and early warning in environmental analysis in addition to the common analytical methods. For the first time, commercially available immunochemistry was fully characterized using a label-free detection method (RIfS) and successfully incorporated into a TIRF-based biosensor setup (RIANA) for reliable sub-nanogram per liter detection of testosterone in aqueous environmental samples.  相似文献   

5.
For detection of low concentrations of analytes in complex biological matrices using optical biosensors, a high surface loading with capture molecules and a low nonspecific binding of nonrelevant matrix molecules are essential. To tailor biosensor surfaces in such a manner, poly(ethylene glycols) (PEG) in varying lengths were immobilised covalently onto glass-type surfaces in different mixing ratios and concentrations, and were subsequently modified with three different kinds of receptors. The nonspecific binding of a model protein (ovalbumin, OVA) and the maximum loading of the respective analytes to these prepared surfaces were monitored using label-free and time-resolved reflectometric interference spectroscopy (RIfS). The three different analytes used varied in size: 150 kDa for the anti-atrazine antibody, 60 kDa for streptavidin and 5 kDa for the 15-bp oligonucleotide. We investigated if the mixing of PEG in different lengths could increase the surface loadings of analyte mimicking a three-dimensional matrix as was found using dextrans as sensor coatings. In addition, the effect on the surface loading was investigated with regard to the size of the analyte molecule using such mixed PEGs on the sensor surface. For further characterisation of the surface coatings, polarisation modulation infrared reflection absorption spectroscopy, atomic force microscopy, and ellipsometry were applied. All authors contributed equally to this work.  相似文献   

6.
The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2–8 °C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration.  相似文献   

7.
A rapid label-free visual assay for the detection of viral RNA using peptide nucleic acid (PNA) probes and gold nanoparticles (AuNPs) is presented in this study. Diagnosis is a crucial step for the molecular surveillance of diseases, and a rapid visual test with high specificity could play a vital role in the management of viral diseases. In this assay, the specific agglomerative behavior of PNA with gold nanoparticles was manipulated by its complementation with viral RNA. The assay was able to detect 5–10 ng of viral RNA from various biological samples, such as allantoic fluids, cell culture fluids and vaccines, in 100 μl of test solution. The developed assay was more sensitive than a hemagglutination (HA) test, a routine platform test for the detection of Newcastle disease virus (NDV), and the developed assay was able to visually detect NDV with as little as 0.25 HA units of virus. In terms of the specificity, the test could discriminate single nucleotide differences in the target RNA and hence could provide visual viral genotyping/pathotyping. This observation was confirmed by pathotyping different known isolates of NDV. Further, the PNA-induced colorimetric changes in the presence of the target RNA at different RNA to PNA ratios yielded a standard curve with a linear coefficient of R2 = 0.990, which was comparable to the value of R2 = 0.995 from real-time PCR experiments with the same viral RNA. Therefore, the viral RNA in a given samples could be quantified using a simple visual spectrophotometer available in any clinical laboratory. This assay may find application in diagnostic assays for other RNA viruses, which are well known to undergo mutations, thus presenting challenges for their molecular surveillance, genotyping and quantification.  相似文献   

8.
采用溶剂热法, 通过有机单体合成了一种亚胺键连接的共价有机框架材料(COF-LZU1); 在常温常压条件下, 通过后合成的方法将贵金属钯(Ⅱ)引入到COF材料中, 合成了复合材料Pd/COF-LZU1, 该材料具有优良的催化性能. 利用Pd/COF-LZU1多孔复合材料将C-反应蛋白(CRP)抗体(anti-CRP)固定在玻碳电极表面, 构建了一种非标记型CRP免疫传感器. 当抗体与抗原发生免疫反应时, 形成的免疫复合物会阻碍电化学探针[Fe(CN)6]4-/3-的电子传递, 降低其响应电流, 从而实现CRP的快速检测. 采用交流阻抗和差示脉冲伏安法(DPV)考察了免疫传感器的电化学特性, 同时考察了测试底液的pH值、 抗原培育时间和抗体固定浓度等实验条件对传感器性能的影响. 在最优的实验条件下, 采用DPV法对CRP进行检测的线性范围为5~180 ng/mL, 检出限为1.66 ng/mL, 线性相关系数为0.992.  相似文献   

9.
The surface of a living yeast cell (Saccharomyces cerevisiae strain W303-1A) has been labeled with silver (Ag) nanoparticles that can form nanoaggregates which have been shown to have surface-enhanced Raman scattering (SERS) activity. The cell wall of a single living yeast cell has been imaged by use of a Raman microspectroscope. The SERS spectra measured from different Ag nanoaggregates were found to be different. This can be explained on the basis of detailed spectral interpretation. The SERS spectral response originates from mannoproteins which cover the outermost regions of the yeast cell wall. Analysis of SERS spectra from the cell wall and the extracted mannoproteins from the yeast has been performed for the clarification of variation in SERS spectra.  相似文献   

10.
Poly(dimethylsiloxane) (PDMS) has a long history of exploitation in a variety of biological and medical applications. Particularly in the past decade, PDMS has attracted interest as a material for the fabrication of microfluidic biochip. The control of cell adhesion on a PDMS surface is important in many microfluidic applications such as cell culture or cell‐based chemicals/drug testing. Unlike many complicated approaches, this study reports simple methods of PDMS surface modification to effectively inhibit or conversely enhance cell adhesion on a PDMS surface using Pluronic surfactant solution and poly‐L ‐lysine, respectively. This research basically succeeded our prior work to further confirm the long‐term capability of 3% Pluronic F68 surfactant to suppress cell adhesion on a PDMS surface over a 6‐day cell culture. Microscopic observation showed that the treated PDMS surface created an unfavorable interface, where chondrocytes seemed to clump together on day 2 and 6 after chondrocyte seeding, and there was no sign of chondrocyte spreading. On the opposite side, results demonstrated that the poly‐L ‐lysine‐treated surface significantly increased fibroblast adhesion by 32% in contrast to the untreated PDMS, which is comparable to the commercial cell‐culture‐grade microplate. However, fibronectin treatment did not have such an effect. All these fundamental information is found useful for any PDMS‐related application. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermo-responsive surfaces can switch their wettability (from wettable to non-wettable) and adhesion (from sticky to non-sticky) according to external temperature changes. These smart surfaces with switchable interfacial properties are playing increasingly important roles in a diverse range of biomedical applications; these controlling cell-adhesion behavior has shown great potential for tissue engineering and disease diagnostics. Herein we reviewed the recent progress of research on PNIPAAm-based thermo-responsive surfaces that can dynamically control cell adhesion behavior. The underlying response mechanisms and influencing factors for PNIPAAm-based surfaces to control cell adhesion are described first. Then, PNIPAAm-modified two-dimensional flat surfaces for cell-sheet engineering and PNIPAAm-modified three-dimensional nanostructured surfaces for diagnostics are summarized. We also provide a future perspective for the development of stimuli-responsive surfaces.  相似文献   

12.
《Analytical letters》2012,45(18):2737-2748
In pH 7.2 Tris-HCl buffer solution, the substrate strand DNA (SDNA) was hybridized to the enzyme strand DNA (EDNA) forming a double strand DNA (dsDNA). The SDNA in dsDNA could be cleaved by lead(II) to release a cleavaged single-stranded (ssDNA) that prevented the gold nanoparticles (AuNPs) from forming a stable AuNPs-ssDNA conjugate. The unconjugated AuNPs were aggregated to form AuNP aggregation (AuNPsA) that appeared as a resonance Rayleigh scattering (RS) peak at 532 nm. When the lead(II) concentration increased, the AuNPs-ssDNA increased, the AuNPsA decreased, the color changed from blue to red, and the RS intensity at 532 nm decreased. The decreased RS intensity ΔI 532 nm was linear to the lead(II) concentration in the range of 0.67–60 nmol/L, with a detection limit of 0.3 nmol/L. The AuNPs-ssDNA exhibited a strong catalytic effect on the reaction between chloroauric acid and vitamin C (VC) that can be detected by an RS method at 620 nm. When the lead(II) concentration increased, the intensity at 620 nm increased, and the increased intensity ΔI 620 nm was linear to the lead(II) concentration in the range of 1.33–120 pmol/L, with a detection limit of 0.5 pmol/L. The proposed method was applied to detect lead(II) in water samples, with satisfactory results.  相似文献   

13.
Two-dimensional correlation spectroscopy (2DCOS) and near-infrared spectroscopy (NIRS) were used to determine the polyphenol content in oat grain. A partial least squares (PLS) algorithm was used to perform the calibration. A total of 116 representative oat samples from four locations in China were prepared and the corresponding near-infrared spectra were measured. Two-dimensional correlation spectroscopy was employed to select wavelength bands for the PLS regression model for the polyphenol determination. The number of PLS components and intervals was optimized according to the coefficients of determination (R2) and root mean square error of cross validation (RMSECV) in the calibration set. The performance of the final model was evaluated using the correlation coefficient (R) and the root mean square error of validation (RMSEV) in the prediction set. The results showed the band corresponding to the optimal calibration model was between 1350 and 1848?nm and the optimal spectral preprocessing combination was second derivative with second smoothing. The optimal regression model was obtained with an R2 of 0.8954 and an RMSECV of 0.06651 in the calibration set and R of 0.9614 and RMSEV of 0.04573 in the prediction set. These measurements reveal the calibration model had qualified predictive accuracy. The results demonstrated that the 2DCOS with PLS was a simple and rapid method for the quantitative determination of polyphenols in oats.  相似文献   

14.
Poly(epichlorohydrin) has been modified chemically using aromatic and aliphatic thiol compounds. The NMR results show that using both aromatic and aliphatic thiols, one achieves degrees of modification of up to 90% without any elimination side reaction. As a consequence no degradative chain-scission takes place. A microstructural analysis of the modified polymers has been carried out by 13C NMR, 1H NMR and 13C DEPT spectroscopy. Additionally, 2D heteronuclear correlated spectroscopy (HMQC and HMBC) were used in order to determine the chemical shifts of quaternary carbons.  相似文献   

15.
In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices.  相似文献   

16.
Christy A  Nyhus A  Kvalheim OM  Hagen S  Schanche J 《Talanta》1999,48(5):359-1120
Porous poly(para-divinylbenzene) and poly(meta-divinylbenzene) particles were synthesised from para-divinylbenzene and meta-divinylbenzene monomers with toluene and 2-ethylhexanoic acid as porogens. The residual vinyl groups in the particles were thereafter reacted using aluminium chloride with dichlorobenzene as a catalyst. The conversion of vinyl groups was followed by analysing polymer particles taken from the reaction mixture at different time intervals. Infrared spectroscopy both in the mid and near infrared region was used as the analytical technique. The intensity changes in the overtone absorption at 1628 nm due to the vinyl bonds were used as the basis for the quantification of the vinyl group consumption. Infrared spectra of the particles in the mid IR were also measured to understand changes taking place in the polymer matrix during the reaction. The results indicated that residual vinyl groups in these polymer particles were consumed during the reaction with aluminium chloride. The reaction of aluminium chloride with the polymer matrix was explained by proposing mechanisms for the formation of different products during the reaction. The complex formed between aluminium chloride and the residual vinyl groups seemed to induce addition of HCl to the vinyl group or leads to crosslinking and/or cyclisation in the case poly(para-DVB) particles. The reaction of aluminium chloride with poly(meta-DVB) takes place to a lesser extent.  相似文献   

17.
The interference of Co(II) on plumbane generation with tetrahydroborate in the presence of hexacyanoferrate(III) was studied with a new mechanism proposed to explain the interference. The products that were obtained, following reactions of a CoCl2 solution with tetrahydroborate(III), which interfere with plumbane generation, were precipitated and investigated by inductively-coupled plasma-atomic emission spectrometry and -mass spectrometry (ICP-OES and ICP-MS). Batch experiments of the potentiometer analysis and pH determination were performed to investigate a mechanism of Co(II) interference on plumbane generation, the role of hexacyanoferrate(III) on plumbane generation, and the function of the masking agent on Co(II) interference. The preferentially formed nanoscale catalytic and magnetic cobalt borides in the redox system cause a potential for a strong reducing condition and induces the precipitation of Fe(III) and Pb(II) in the solution, which is counter to plumbane generation. Potassium thiocyanate/oxalic acid/1,10-phenanthroline, as the combined masking agent and working with hexacyanoferrate(III), decreases the amount of borides in the precipitates and acts as a kind of buffer of the redox potential, which maintains the conditions for plumbane generation. This hydride generation method has been applied to the direct determination of trace Pb in cobalt oxide standard reference materials with a detection limit of 0.3 µg L− 1.  相似文献   

18.
The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm−1) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.  相似文献   

19.
Treatment of SbX3 (X = Br, Cl) with DippnacnacLi (Dippnacnac = [{N(C6H3iPr22,6)C(Me)}2CH]) or Mesnacnac (Mesnacnac = [{N(Mes)C(Me)}2CH], Mes = 2,4,6, trimethyl benzene) affords different products that are dependent on the stoichiometry of the reaction and the halide precursor. When DippnacnacLi is reacted with SbBr3, C-H activation of the ligand backbone is observed and an asymmetric, bridged bromide dimer is isolated. In comparison, the reaction of SbCl3 with MesnacnacLi affords monomeric MesnacnacSbCl2. The solid-state structures were determined using X-ray crystallography.  相似文献   

20.
Thermal oxidation of poly(1-trimethylsilylprop-1-yne) was studied by IR spectroscopy in the 20—245 °C temperature interval. In the 20—160 °C temperature range, the reaction proceeds predominantly at the C—Me group as revealed by the decrease in the intensity of the bands of the methyl group bound to the C atom and the appearance of the bands of the hydroperoxide and methylene groups. The decomposition of hydroperoxides produces aldehydes and ethers. At 160—200 °C, oxidation occurs via two routes: at the C—Me and C=C groups, while the Me3Si group remains unchanged. At 230—240 °C, the rate of the reaction occurring at the C=C bond is higher than the rates of the processes involving the MeC and Me3Si groups. The relative content of the structural units was calculated for the samples oxidized at different temperatures. Plausible mechanisms of thermal oxidation of poly(1-trimethylsilylprop-1-yne) were considered on the basis of the data obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号