首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Discrete time nonautonomous dynamical systems generated by nonautonomous difference equations are formulated as discrete time skew—product systems consisting of cocycle state mappings that are driven by discrete time autonomous dynamical systems. Forwards and pullback attractors are two possible generalizations of autonomous attractors to such systems. Their existence follows from appropriate forwards or pullback dissipativity conditions. For discrete time nonautonomous dynamical systems generated by asynchronous systems with frequency updating components such a dissipativity condition is usually known for a single starting parameter value of the driving system. Additional conditions that then ensure the existence of a forwards or pullback attractor for such an asynchronous system are investigated here  相似文献   

2.
Dynamical equations on time scales typically generate a nonautonomous process, even when the vector field function does not depend explicitly on time. Nonautonomous pullback attractors are thus the appropriate generalisation of autonomous attractors to time scale dynamics. The existence of a pullback attractor follows when the process has a pullback absorbing set. Assuming that a dynamical equation over a given time scale which has no rapidly increasing gaps satisfies a certain dissipativity condition, and thus possesses a pullback attractor, and that its solutions depend uniformly on initial data including the time scale, it is shown that the same dynamical equation over nearby time scales also has a pullback attractor, whose component sets converge upper semicontinuously to the corresponding component sets of the pullback attractor of the original system.  相似文献   

3.
4.
In this work, we define the notions of ‘impulsive non‐autonomous dynamical systems’ and ‘impulsive cocycle attractors’. Such notions generalize (we will see that not in the most direct way) the notions of autonomous dynamical systems and impulsive global attractors in the current published literature. We also establish conditions to ensure the existence of an impulsive cocycle attractor for a given impulsive non‐autonomous dynamical system, which are analogous to the continuous case. Moreover, we prove the existence of such attractor for a non‐autonomous 2D Navier–Stokes equation with impulses, using energy estimates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The global asymptotic behavior of dynamical systems on compact metric spaces can be described via Morse decompositions. Their components, the so-called Morse sets, are obtained as intersections of attractors and repellers of the system. In this paper, new notions of attractor and repeller for nonautonomous dynamical systems are introduced which are designed to establish nonautonomous generalizations of the Morse decomposition. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Moreover, Morse decompositions of one-dimensional and linear systems are studied.

  相似文献   


6.
The article is devoted to the study of the relation between forward and pullback attractors of set-valued nonautonomous dynamical systems (cocycles). Here it is proved that every compact global forward attractor is also a pullback attractor of the set-valued nonautonomous dynamical system. The inverse statement, generally speaking, is not true, but we prove that every global pullback attractor of an α-condensing set-valued cocycle is always a local forward attractor. The obtained general results are applied while studying periodic and homogeneous systems. We give also a new criterion of the absolute asymptotic stability of nonstationary discrete linear inclusions. Dedicated to our friend Professor Enrico Primo Tomasini on the occasion of his 55th birthdayMathematics Subject Classifications (2000) Primary: 34C35, 34D20, 34D40, 34D45, 58F10,58F12, 58F39; secondary: 35B35, 35B40.  相似文献   

7.
This paper introduces a new 3-D quadratic autonomous system, which can generate two coexisting single-wing chaotic attractors and a pair of diagonal double-wing chaotic attractors. More importantly, the system can generate a four-wing chaotic attractor with very complicated topological structures over a large range of parameters. Some basic dynamical behaviors and the compound structure of the new 3-D system are investigated. Detailed bifurcation analysis illustrates the evolution processes of the system among two coexisting sinks, two coexisting periodic orbits, two coexisting single-wing chaotic attractors, major and minor diagonal double-wing chaotic attractors, and a four-wing chaotic attractor. Poincaré-map analysis shows that the system has extremely rich dynamics. The physical existence of the four-wing chaotic attractor is verified by an electronic circuit. Finally, spectral analysis shows that the system has an extremely broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.  相似文献   

8.
This paper concerns comparisons between attractors for random dynamical systems and their corresponding noiseless systems. It is shown that if a random dynamical system has negative time trajectories that are transient or explode with probability one, then the random attractor cannot contain any open set. The result applies to any Polish space and when applied to autonomous stochastic differential equations with additive noise requires only a mild dissipation of the drift. Additionally, following observations from numerical simulations in a previous paper, analytical results are presented proving that the random global attractors for a class of gradient-like stochastic differential equations consist of a single random point. Comparison with the noiseless system reveals that arbitrarily small non-degenerate additive white noise causes the deterministic global attractor, which may have non-zero dimension, to ‘collapse’. Unlike existing results of this type, no order preserving property is necessary.   相似文献   

9.
In this paper, a novel four-dimensional autonomous system in which each equation contains a quadratic cross-product term is constructed. It exhibits extremely rich dynamical behaviors, including 3-tori (triple tori), 2-tori (quasi-periodic), limit cycles (periodic), chaotic and hyperchaotic attractors. In particular, we observe 3-torus phenomena, which have been rarely reported in four-dimensional autonomous systems in previous work. With the parameter r varying in quite a wide range, the evolution process of the system begins from 3-tori, and after going through a series of periodic, quasi-periodic and chaotic attractors in so many different shapes coming into being alternately, it evolves into hyperchaos, finally it degenerates to periodic attractor. Moreover, when the system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of the hyperchaotic systems already reported, especially the largest Lyapunov exponents. We also observe a chaotic attractor of a very special shape. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation diagram and phase portraits.  相似文献   

10.
The long-time behaviour of Runge–Kunge discretizationsis investigated when applied to a smooth nonautonomous index2 differential algebraic equation (DAE) with a cocycle structure,i.e. a DAE driven by an autonomous dynamical system, which isassumed to have a uniform attractor. It is shown that the cocyclestructure of the continuous dynamics is preserved under discretizationand that a uniform forward or pullback attractor of the DAEpersists under discretization by a Runge–Kutta schemewith the component subsets of the numerical attractor convergingupper semicontinuously to their continuous time counterparts.  相似文献   

11.
A weakly damped Schrödinger equation possessing a global attractor are considered. The dynamical properties of a class of finite difference scheme are analysed. The existence of global attractor is proved for the discrete system. The stability of the difference scheme and the error estimate of the difference solution are obtained in the autonomous system case. Finally, long-time stability and convergence of the class of finite difference scheme also are analysed in the nonautonomous system case.  相似文献   

12.
In this paper, a new three-dimensional autonomous chaotic system is presented, and the range of the parameters which can induce the system to be unstable is analyzed. The dynamical behavior of this system is further investigated in some detail, including equilibria and stability, various attractors, together with the maximally complex attractor, Poincaré maps, bifurcations, and Lyapunov-exponent spectrum. The oscillator circuit of the new chaotic system is afterwards designed by using EWB software and a typical chaotic attractor is experimentally demonstrated.  相似文献   

13.
1. IntroductionThe nonlinear schr~r equation with weakly dampedwhere t = N, o > 0, together with appropriate boUndary and hatal condition, is ared inmany physical fields. The echtence of an attractor is one of the most boortant ~eristiCSfor a dissipative system. The long-tabs dynamics is completely determined by the attractorof the system. J.M. Ghidaglia[1] studied the lOng-the behavior of the nonlineaz Sequation (1.1) and proved the eAstence of a compact global attractor A in H'(n) which…  相似文献   

14.
We study the topological structure of singular (in the sense of the Feigenbaum-Sharkovskii-Magnitskii theory) attractors of nonlinear dissipative systems of differential equations. We show that any such attractor is a stable nonperiodic trajectory lying on a two-dimensional infinitely folded heteroclinic separatrix manifold generated by the unstable two-dimensional invariant manifold of the original singular cycle as the bifurcation parameter of the system varies. The results obtained for two-dimensional nonautonomous and three-dimensional autonomous dissipative systems are generalized to autonomous multi- and infinite-dimensional dissipative systems as well as to conservative (in particular, Hamiltonian) systems.  相似文献   

15.
16.
The existence of an attractor for a 2D-Navier-Stokes system with delay is proved. The theory of pullback attractors is successfully applied to obtain the results since the abstract functional framework considered turns out to be nonautonomous. However, on some occasions, the attractors may attract not only in the pullback sense but in the forward one as well. Also, this formulation allows to treat, in a unified way, terms containing various classes of delay features (constant, variable, distributed delays, etc.). As a consequence, some results for the autonomous model are deduced as particular cases of our general formulation.  相似文献   

17.
We establish the existence and stability results for periodic nonautonomous uniform forward attractors of periodic general dynamical systems (set-valued dynamical systems). We also investigate the dynamical behavior of nonautonomous periodic differential inclusion x(t)∈f(t,x(t)) on Rm with only upper semi-continuous right-hand side by applying the abstract results. Firstly, we show that if the system has a compact uniformly attracting set, then it has a periodic nonautonomous uniform forward attractor A. Secondly, we prove that A is robust with respect to both internal and external perturbations. Finally, we apply the robustness result to discuss the effects of small time delays to asymptotic stability of the system.  相似文献   

18.
The classical theory of random dynamical systems is a pathwise theory based on a skew-product system consisting of a measure theoretic autonomous system that represents the driving noise and a topological cocycle mapping for the state evolution. This theory does not, however, apply to nonlocal dynamics such as when the dynamics of a sample path depends on other sample paths through an expectation or when the evolution of random sets depends on nonlocal properties such as the diameter of the sets. The authors showed recently in terms of stochastic morphological evolution equations that such nonlocal random dynamics can be characterized by a deterministic two-parameter process from the theory of nonautonomous dynamical systems acting on a state space of random variables or random sets with the mean-square topology. This observation is exploited here to provide a definition of mean-square random dynamical systems and their attractors. The main difficulty in applying the theory is the lack of useful characterizations of compact sets of mean-square random variables. It is illustrated through simple but instructive examples how this can be avoided in strictly contractive cases or circumvented by using weak compactness. The existence of a pullback attractor then follows from the much more easily determined mean-square ultimate boundedness of solutions.  相似文献   

19.
Understanding the structure of attractors is fundamental in nonautonomous stability and bifurcation theory. By means of clarifying theorems and carefully designed examples we highlight the potential complexity of attractors for nonautonomous differential equations that are as close to autonomous equations as possible. We introduce and study bounded uniform attractors and repellors for nonautonomous scalar differential equations, in particular for asymptotically autonomous, polynomial, and periodic equations. Our results suggest that uniformly attracting or repelling solutions are the true analogues of attracting or repelling fixed points of autonomous systems. We provide sharp conditions for the autonomous structure to break up and give way to a bewildering diversity of nonautonomous bifurcations.  相似文献   

20.
In the first part of this work, the local singularity of non-smooth dynamical systems was discussed and the criteria for the grazing bifurcation were presented mathematically. In this part, the fragmentation mechanism of strange attractors in non-smooth dynamical systems is investigated. The periodic motion transition is completed through grazing. The concepts for the initial and final grazing, switching manifolds are introduced for six basic mappings. The fragmentation of strange attractors in non-smooth dynamical systems is described mathematically. The fragmentation mechanism of the strange attractor for such a non-smooth dynamical system is qualitatively discussed. Such a fragmentation of the strange attractor is illustrated numerically. The criteria and topological structures for the fragmentation of the strange attractor need to be further developed as in hyperbolic strange attractors. The fragmentation of the strange attractors extensively exists in non-smooth dynamical systems, which will help us better understand chaotic motions in non-smooth dynamical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号