首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses of Sulfonated Derivatives of 4-Fluoroaniline Synthesis of 2-amino-5-fluorobenzenesulfonic acid ( 2 ) was achieved by baking the hydrogen sulfate of 4-fluoroaniline ( 1 ). Sulfonation of p-fluoroacetanilide ( 4 ) with oleum followed by hydrolysis gave 5-amino-2-fluorobenzenesulfonic acid ( 3 ). The same reaction with 1 yielded 3 in an impure state. The structures of 2 and 3 were confirmed by converting the diazonium chlorides derived from 5-fluoro-2-nitroaniline ( 5 ) and from 2-fluofo-5-nitroaniline ( 8 ) to 5-fluoro-2-nitrobenzene-sulfonyl chloride ( 6 ) and 2-fluoro-5-nitrobenzenesulfonyl chloride ( 9 ), respectively, followed by hydrolysis of 6 to 5-fluoro-2-nitrobenzenesulfonic acid ( 7 ), and of 9 to 2-fluoro-5-nitrobenzenesulfonic acid ( 10 ), and by final reduction. Compound 10 was also obtained by sulfonation of 1-fluoro-4-nitrobenzene ( 11 ) with oleum.  相似文献   

2.
On the Synthesis of Sulfonated Derivatives of 4- and 5-Aminoindan Baking the hydrogensulfate salt of 4-aminoindan (1) and 5-aminoindan (2) led, respectively, to 4-aminoindan-7-sulfonic acid (3) and 5-aminoindan-6-sulfonic acid (4). Acid 4 was also obtained by direct sulfonation of 2. 4-Aminoindan-6-sulfonic acid (5) and 6-aminoindan-4-sulfonic acid (6) were prepared by sulfonation of 4-nitroindan (7) and 5-nitroindan (9) , respectively, to 4-nitroindan-6-sulfonic acid (8) and 6-nitroindan-4-sulfonic acid (10) , followed by a Béchamp-reduction. Treatment of 1 with amidosulfuric acid gave 3 , whereas the same reaction with 2 led to a mixture of 4 and 5-aminoindan-4-sulfonic acid (11). Independent synthesis of 11 was achieved by the following sequence of reactions: sulfur dioxide treatment of the diazonium chloride derived from 4-amino-5-nitrodan (13) gave 5-nitroindan-4-sulfonyl chloride (14) ; hydrolysis to 5-nitroindan-4-sulfonic acid (15) , and final reduction. The 4-aminoindan-5-sulfonic acid (16) was synthesized by treatment of 4-amino-7-bromoindan (18) with amidosulfuric acid to give 4-amino-7-bromoindan-5-sulfonic acid (19) followed by hydrogenolysis. Sulfonation of 4-acetyl-amino-7-bromoindan (17) with oleum followed by hydrolysis led to 7-amino-4-bromoindan-5-sulfonic acid (20) , the structure of which was confirmed by reductive dehalogenation to 5 .  相似文献   

3.
Synthese of sulfonated derivatives of 2-amino-p-xylene Sulfonation of 2-amino-p-xylene (2) gave 2-amino-p-xylene-5-sulfonic acid (1) . The 2-amino-p-xylene-6-sulfonic acid (3) was prepared via three routes: (1) sulfonation of 2-amino-5-chloro-p-xylene (19) to 5-amino-2-chloro-p-xylene-3-sulfonic acid (20) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-6-nitro-p-xylene (21) to 2-nitro-p-xylene-6-sulfonyl chloride (11) followed by hydrolysis to 2-nitro-p-xylene-6-sulfonic acid (4) and Béchamp reduction; (3) Béchamp reduction of 2-chloro-3-nitro-p-xylene-5-sulfonic acid (13) to 3-amino-2-chloro-p-xylene-5-sulfonic acid (16) and subsequent hydrogenolysis. Catalytic reduction of 13 in aqueous sodium carbonate solution gave mixtures of 3 and 16 . 2-Amino-p-xylene-3-sulfonic acid (27) was synthesized via two routes: (1) reaction of 19 with sulfamic acid to 2-amino-5-chloro-p-xylene-3-sulfonic acid (26) followed by hydrogenolysis; (2) sulfur dioxide treatment of the diazonium salt derived from 2-amino-3-nitro-p-xylene (28) to 2-nitro-p-xylene-3-sulfonyl chloride (12) , hydrolysis to 2-nitro-p-xylene-3-sulfonic acid (7) and Béchamp reduction.  相似文献   

4.
Syntheses of Sulfonated Derivatives of 2-Fluoroaniline Synthesis of 4-amino-3-fluorobenzenesulfonic acid ( 3 ) was achieved in two ways: reaction of 2-fluoroaniline ( 1 ) with amidosulfonic acid and by first conventionally converting 4-nitro-3-fluoroaniline ( 8 ) to 4-nitro-3-fluorobenzenesulfonyl chloride ( 9 ) followed subsequently by hydrolysis to 3-fluoro-4-nitrobenzenesulfonic acid ( 10 ) and reduction. Hydrogenolysis of 3 gave sulfanilic acid ( 7 ). Both, sulfonation of fluorobenzene ( 6 ) to 4-fluorobenzenesulfonic acid ( 11 ) followed by nitration and sulfonation of 1-fluoro-2-nitrobenzene ( 12 ) led to 4-fluoro-3-nitrobenzenesulfonic acid ( 13 ). Reduction of 13 gave the isomeric 3-amino-4-fluorobenzenesulfonic acid ( 4 ), which was also obtained both by sulfonation of 1 and by sulfonation of o-fluoroacetanilide ( 14 ) followed by hydrolysis. Selective hydrogenolyses of 2-amino-5-bromo-3-fluorobenzenesulfonic acid ( 15 ), prepared by reaction of 4-bromo-2-fluoroaniline ( 16 ) with amidosulfonic acid, and of 4-amino-2-bromo-5-fluorobenzenesulfonic acid ( 20 ), obtained by sulfonation of 5-bromo-2-fluoroaniline ( 19 ) yielded the isomers 2-amino-3-fluorobenzenesulfonic acid ( 5 ) and 3 , respectively. The fourth isomer, 3-amino-2-fluorobenzenesulfonic acid ( 2 ), was synthesized by sulfur dioxide treatment of the diazonium chloride derived from 2-fluoro-3-nitroaniline ( 21 ) to 2-fluoro-3-nitrobenzenesulfonyl chloride ( 22 ), followed by hydrolysis to 2-fluoro-3-nitrobenzenesulfonic acid ( 23 ) and final Béchamp-reduction.  相似文献   

5.
On the Synthesis of Sulfonated Derivatives of 2,3-Dimethylaniline and 3,4-Dimethylaniline Baking the hydrogensulfate salt of 2,3-dimethylaniline ( 1 ) or of 3,4-dimethylaniline ( 2 ) led to 4-amino-2,3-dimethylbenzenesulfonic acid ( 4 ) and 2-amino-4,5-dimethylbenzenesulfonic acid ( 5 ), respectively (Scheme 1). The sulfonic acid 5 was also obtained by treatment of 2 with sulfuric acid or by reaction of 2 with amidosulfuric acid. 3-Amino-4,5-dimethylbenzenesulfonic acid ( 3 ) and 5-Amino-2,3-dimethylbenzenesulfonic acid ( 6 ) were prepared by sulfonation of 1,2-dimethyl-3-nitrobenzene ( 9 ) to 3,4-dimethyl-5-nitrobenzenesulfonic acid ( 11 ) and of 1,2-dimethyl-4-nitrobenzene ( 10 ) to 2,3-dimethyl-5-nitrobenzenesulfonic acid ( 12 ), respectively, with subsequent Béchamp reduction (Scheme 1). Preparations of 2-amino-3,4-dimethylbenzenesulfonic acid ( 7 ) and of 6-amino-2,3-dimethylbenzenesulfonic acid ( 8 ) were achieved by the sulfur dioxide treatment of the diazonium chlorides derived from 3,4-dimethyl-2-nitroaniline ( 24 ) and from 2,3-dimethyl-6-nitroaniline ( 31 ) to 3,4-dimethyl-2-nitrobenzenesulfonyl chloride ( 29 ) and 2,3-dimethyl-6-nitrobenzenesulfonyl chloride ( 32 ), respectively, followed by hydrolysis to 3,4-dimethyl-2-nitrobenzenesulfonic acid ( 30 ) and 2,3-dimethyl-6-nitrobenzenesulfonic acid ( 33 ), and final reduction (Scheme 3). Compound 7 was also synthesized by reaction of 4-chloro-2,3-dimethylaniline ( 23 ) with amidosulfuric acid to 2-amino-5-chloro-3,4-dimethylbenzenesulfonic acid ( 20 ) and subsequent hydrogenolysis (Scheme 2). 4′-Bromo-2′, 3′-dimethyl-acetanilide ( 13 ) and 4′-chloro-2′, 3′-dimethyl-acetanilide ( 14 ) on treatment with oleum yielded 5-acetylamino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 17 ) and 5-acetylamino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 18 ), respectively. Their structures were proven by hydrolysis to 5-amino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 21 ) and 5-amino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 22 ), followed by reductive dehalogenation to 3 .  相似文献   

6.
Notes on the Synthesis of Sulfonated Derivatives of 5,6,7,8-Tetrahydro-1-naphthylamine and 5,6,7,8-Tetrahydro-2-naphthylamine Sulfonation of 5,6,7,8-tetrahydro-1-naphthylamine ( 1 ) with sulfuric acid gave a mixture of 1-amino-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 2 ), 4-amino-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 13 ) and 4-amino-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 3 ). The same reaction with 5,6,7,8-tetrahydro-2-naphthylamine ( 20 ) yielded 3-amino-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 21 ); formation of 2-amino-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 16 ) or of 3-amino-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 24 ) was not observed. Treatment of 4-bromo-5,6,7,8-tetrahydro-1-naphthylamine ( 4 ) or of its 4-chloro analogue 5 with amidosulfuric acid gave 1-amino-4-bromo-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 9 ) and its 4-chloro analogue 10 , respectively, which were dehalogenated to 2 . Preparations of 13 and 24 were achieved by sulfonation of 5-nitro-1,2,3,4-tetrahydronaphthalene ( 14 ) and 6-nitro-1,2,3,4-tetrahydronaphthalene ( 22 ) to 4-nitro-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 15 ) and 3-nitro-5,6,7,8-tetrahydronaphthalene-1-sulfonic acid ( 23 ), respectively, followed by Béchamp reductions. The sulfonic acid 13 was also obtained by hydrogenolysis of 4-amino-1-bromo-5,6,7,8-tetrahydronaphthalene-2-sulfonic acid ( 11 ) or of its 1-chloro analogue 12 ; compounds 11 and 12 were synthesized from N-(4-bromo-5,6,7,8-tetrahydro-1-naphthyl)acetamide ( 7 ) and from its 4-chloro analogue 8 , respectively, by sulfonation with oleum and subsequent hydrolysis. By ‘baking’ the hydrogensulfate salt of 1 or 20 compounds 3 and 21 were obtained, respectively. Synthesis of 16 was achieved by sulfur dioxide treatment of the diazonium chloride derived from 2-nitro-5,6,7,8-tetrahydro-1-naphthylamine ( 17 ) giving 2-nitro-5,6,7,8-tetrahydronaphthalene-1-sulfonyl chloride ( 18 ), followed by hydrolysis of 18 to the corresponding sulfonic acid 19 and final reduction.  相似文献   

7.
8.
An examination has been made of the reaction of secondary amines with 2-bromo-1-indanones II substituted at position C-2, and with 2-substituted indenones III. 2-Bromo-2-methyl-1-indanone (IIa) and dimethylamine yielded a mixture of the corresponding 2- and 3-amino-methylindanones IVa and Va. 2-Bromo-2-methyl-6-chloro-1-indanone (II b) and morpholine gave a mixture of the 2- and 3-aminocompounds IVe and Ve.  相似文献   

9.
A New Synthesis of DL -Armentomycin and Related 2-Amino-4-polyhalobutyric Acids An efficient method for the synthesis of 2-amino-4-halobutyric acids 2 starting from the corresponding ethyl 2,4-polyhalobutyrates 1 is presented (s. Scheme 1). The method is illustrated by a high yield synthesis of the known antibiotic DL -armentomycin (= 2-amino-4,4-dichlorobutyric acid; 2a ).  相似文献   

10.
11.
12.
13.
14.
15.
Zusammenfassung Verschiedene 1,3-Dihydro-1,3,2-benzodiazaphosphol-2-oxide und entsprechende Bisverbindungen wurden hergestellt. Einige der Verbindungen konnten nur ohne Lösungsmittel bei Temperaturen bis zu 250°C in guter Ausbeute und in großer Reinheit erhalten werden.Bei der Hydrolyse werden meist beide P–N-Bindungen gespalten, und es entsteht das Monosalz der Phosphonsäure mit dem Diamin; dieses Salz ist identisch mit dem aus den beiden Komponenten direkt erhaltenen.
Various 1.3-dihydro-1.3.2-benzodiazaphosphole-2-oxides and the corresponding bis phosphole oxides have been prepared. Some of the compounds allowed to be prepared in satisfactory yield and high purity only in the absence of solvents at temperatures up to 250°C.Hydrolysis usually entailed cleavage of the two P–N-bonds, and interaction with the diamine yields the monosalt of phosphonic acid; this salt is identical with that obtained by direct interaction of the two reactants.
  相似文献   

16.
17.
The title compounds3 have been prepared by ring transformation reactions of the isomeric 2-sec-amino-1,3-thiazine-6-thiones1 via ring-opening products2 and by special cyclocondensation reactions with thiocarboxamides8, and with iminium salts10, starting from 2,2-dichlorovinyl ketones6 in all cases. The pathways differ specifically in scope and limitations. On the other hand the intermediates2 react with alkylating agents to 2,6-di-sec-amino-1,3-thiazinium salts4, which are also available via alkylation of3 to 2-methylthio-1,3-thiazinium salts11 and aminolysis. Moreover,11 serve as useful precursors for other 1,3-thiazine derivatives by nucleophilic methylthio displacement (examples12).
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号