首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Electronic structures, magnetic properties, and spin-dependent electron transport characteristics of C-doped ZnO nanowires have been investigated via first-principles method based on density functional theory and nonequilibrium techniques of Green's functions. Our calculations show that the doping of carbon atoms in a ZnO nanowire could induce strong magnetic moments in the wire, and the electronic structures as well as the magnetic properties of the system sensitively depend on partial hydrogenation. Based on these findings, we proposed a quasi-1d tunneling magnetic junction made of a partially hydrogenated C-doped ZnO nanowire, which shows a high tunneling magnetoresistance ratio, and could be the building block of a new class of spintronic devices.  相似文献   

2.
The rates of electron tunneling through monolayers and bilayers of alkanethiols self-assembled in a potentiostatically controlled Hg-Hg junction are reported. An alkanethiolate monolayer is formed in situ on one or both Hg drops via oxidative adsorption at the controlled potential. Subsequently, the Hg drops are brought into contact using micromanipulators. The junction formation is instantly followed by the flow of a steady-state tunneling current between the two electrodes. A plot of the logarithm of the tunneling current density vs the total number of carbon atoms in each junction yields identical tunneling coefficients, beta = 1.06 +/- 0.04/-CH(2)- and beta = 1.02 +/- 0.07/-CH(2)-, for monolayers and bilayers of alkanethiols, respectively. Careful examination of the tunneling data indicates that the solvent and ions are ejected from the junction area. The tunneling current recorded for a bilayer of 1-octanethiol or 1-nonanethiol is ca. 2-fold larger than a corresponding tunneling current recorded for monolayers of 1-hexadecanethiol or 1-octadecanethiol, respectively. This result is explained in terms of weak electronic coupling across the noncovalent molecule/electrode interface.  相似文献   

3.
Magnetic tunnel junction with a large tunneling magnetoresistance has attracted great attention due to its importance in the spintronics applications. By performing extensive density functional theory calculations combined with the nonequilibrium Green's function method, we explore the spin-dependent transport properties of a magnetic tunnel junction, in which a non-polar SrTiO$_{3}$ barrier layer is sandwiched between two Heusler alloy Co$_{2}$MnSi electrodes. Theoretical results clearly reveal that the near perfect spin-filtering effect appears in the parallel magnetization configuration. The transmission coefficient in the parallel magnetization configuration at the Fermi level is several orders of magnitude larger than that in the antiparallel magnetization configuration, resulting in a huge tunneling magnetoresistance (i.e. $>10^6$), which originates from the coherent spin-polarized tunneling, due to the half-metallic nature of Co$_{2}$MnSi electrodes and the significant spin-polarization of the interfacial Ti 3d orbital.  相似文献   

4.
We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.  相似文献   

5.
Quantum mechanical tunneling theory is applied to the problem of synaptic vesicle release and to the problem of electric transmission at the ephaptic junction. In the synapse the tunneling produces conformational changes in macromolecules to open and close vesicle macrogates. Quantum mechanical tunneling as a basis for charge transfer and physical release of vesicles at junction membranes provides a unified concept of ephaptic and synaptic transmission. Details of this model are in agreement with experimental data for miniature endplate potential frequency and delay effects as a function of polarization, osmotic pressure, and temperature. The theory accounts for anatomical specializations at the synaptic cleft and the narrow junction observed for the ephapse.  相似文献   

6.
In interfacing man-made electronic components with specifically folded biomacromolecules, the perturbative effects of junction structure on any signal generated should be considered. We report herein on the electron-transfer characteristics of the blue copper metalloprotein, azurin, as characterized at a refined level by conducting atomic force microscopy (C-AFM). Specifically, the modulation of current-voltage (I-V) behavior with compressional force has been examined. In the absence of assignable resonant electron tunneling within the confined bias region, from -1 to 1 V, the I-V behavior was analyzed with a modified Simmons formula. To interpret the variation of tunneling barrier height and barrier length obtained by fitting with the modified Simmons formula, an atom packing density model associated with protein mechanical deformation was proposed and simulated by molecular dynamics. The barrier heights determined at the minimum forces necessary for stable electrical contact correlate reasonably well with those estimated from bulk biophysical (electroanalytical and photochemical) experiments previously reported. At higher forces, the tunnel barrier decreases to fall within the range observed with saturated organic systems. Molecular dynamics simulations revealed changes in secondary structure and atomic density of the protein with respect to compression. At low compression, where transport measurements are made, secondary structure is retained, and atomic packing density is observed to increase linearly with force. These predictions, and those made at higher compression, are consistent with both experimentally observed modulations of tunneling barrier height with applied force and the applicability of the atom packing density model of electron tunneling in proteins to molecular-level analyses.  相似文献   

7.
Pan  Zhi-Chao  Li  Jin  Chen  Lijue  Tang  Yongxiang  Shi  Jia  Liu  Junyang  Liao  Jie-Lou  Hong  Wenjing 《中国科学:化学(英文版)》2019,62(9):1245-1256
The conductance through single-molecule junctions characterized by the break junction techniques consists of the through-space tunneling and through-molecule tunneling conductance, and the existence of through-space tunneling between the electrodes makes the quantitative extraction of the intrinsic molecular signals of single-molecule junctions challenging. Here, we established an analytic model to describe the evolution of the conductance of a single molecule in break junction measurements. The experimental data for a series of oligo(aryleneethynylene) derivatives validate the proposed model, which provides a modeling insight into the conductance evolution for the opening process in a "real" break junction experiment. Further modulations revealed that the junction formation probability and rupture distance of the molecular junction, which reflect the junction stability, will significantly influence the amplitude and position of the obtained conductance peak. We further extend our model to a diffusion and a chemical reaction process, for which the simulation results show that the break junction technique offers a quantitative understanding of these time-dependent systems, suggesting the potential of break junction techniques in the quantitative characterization of physical and chemical processes at the single-molecule scale.  相似文献   

8.
We propose a scheme for calculation of linear optical response of current-carrying molecular junctions for the case when electronic tunneling through the junction is much faster than characteristic time of external laser field. We discuss relationships between nonequilibrium Green's function (NEGF) and time-dependent density functional theory (TDDFT) approaches and derive expressions for optical response and linear polarizability within NEGF-TDDFT scheme. Corresponding results for isolated molecule, derived within TDDFT approach previously, are reproduced when coupling to contacts is neglected.  相似文献   

9.
Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH(2), and CN) at a solid/liquid interface. The combination of current-distance and current-voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH(2) > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.  相似文献   

10.
Inelastic electron tunneling spectroscopy (IETS) is a unique surface and interface analytical technique using electron tunneling through a metal/insulator/metal tunneling junction at cryogenic temperatures. It gives the vibrational spectrum of a very thin (nm) insulator film and the adsorbed species on it. The high sensitivity, good resolution, and wide spectral range inherent in IETS enable us to analyze the surface and interface of the insulator in detail. The tunneling junction is a good model system for oxide catalysts, electronic devises, and solid state sensors. Information about the surfaces of alumina and magnesia, the adsorption states and chemical reactions of adsorbed species occurring on these oxides can be obtained through an analysis of the tunneling spectra. The structures and properties of evaporated thin semiconductor films can also be studied. In this review, the surface characterization of alumina and magnesia, the adsorption and surface reactions of organic acids, esters, amides, and nitryls on these oxides, and the characterization of thin evaporated films of Si, Ge, and the oxides are summarized.  相似文献   

11.
The single-electron tunneling (SET) spectroscopy of C(60) molecule in a double-barrier tunnel junction is investigated by combining the scanning tunneling spectroscopy experiment and the theoretical simulation using the modified orthodox theory. The interplay between the SET effect and the discrete energy levels of C(60) molecule is studied. Three types of SET spectroscopies with different characters are obtained, corresponding to different tunneling processes and consistent with the previous theoretical prediction. Both the charging mode and resonance mode can arouse the current increase in the SET spectroscopy. The resonance mode is realized mainly by two mechanisms, including the resonance when the electron spans the second junction after already spanning the first junction. Some previous confused results have been clarified. Our results show that three types of SET spectroscopies can be together examined to quantitatively determine the frontier orbitals of the nanostructure by identifying the modes of various current increases.  相似文献   

12.
We study inelastic electron tunneling through a molecular junction using the nonequilibrium Green's function formalism. The effect of the mutual influence between the phonon and the electron subsystems on the electron tunneling process is considered within a general self-consistent scheme. Results of this calculation are compared to those obtained from the simpler Born approximation and the simplest perturbation theory approaches, and some shortcomings of the latter are pointed out. The self-consistent calculation allows also for evaluating other related quantities such as the power loss during electron conduction. Regarding the inelastic spectrum, two types of inelastic contributions are discussed. Features associated with real and virtual energy transfer to phonons are usually observed in the second derivative of the current I with respect to the voltage Phi when plotted against Phi. Signatures of resonant tunneling driven by an intermediate molecular ion appear as peaks in the first derivative dI/dPhi and may show phonon sidebands. The dependence of the observed vibrationally induced lineshapes on the junction characteristics, and the linewidth associated with these features are also discussed.  相似文献   

13.
Single-electron tunneling through Au substrate-alkanethiol-Pd cluster-tip junctions is investigated with scanning tunneling spectroscopy. The measured I(V) curves reveal several characteristic features of the Coulomb blockade, namely, the presence of a Coulomb gap and a Coulomb staircase. By using the orthodox theory of single-electron tunneling, the capacitances and resistances of the double junction system as well as the fractional charge are extracted from the experimental data.  相似文献   

14.
We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ, resulting in formation of a direct covalent σ bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated π system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the π system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G(0) = 2e(2)/h). Junctions formed with methylene-terminated oligophenyls with two to four phenyl units show a 100-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling, as they exhibit an exponential dependence of conductance on oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show near-resonant transmission, with a crossover to tunneling for the longer oligomers.  相似文献   

15.
16.
In superconductors, magnetic impurities induce a pair-breaking potential for Cooper pairs, which locally affects the Bogoliubov quasiparticles and gives rise to Yu-Shiba-Rusinov (YSR or Shiba, in short) bound states in the density of states (DoS). These states carry information on the magnetic coupling strength of the impurity with the superconductor, which determines the many-body ground state properties of the system. Recently, the interest in Shiba physics was boosted by the prediction of topological superconductivity and Majorana modes in magnetically coupled chains and arrays of Shiba impurities.Here, we review the physical insights obtained by scanning tunneling microscopy into single magnetic adsorbates on the s-wave superconductor lead (Pb). We explore the tunneling processes into Shiba states, show how magnetic anisotropy affects many-body excitations, and determine the crossing of the many-body ground state through a quantum phase transition. Finally, we discuss the coupling of impurities into dimers and chains and their relation to Majorana physics.  相似文献   

17.
采用扫描隧道显微镜(STM)于78 K研究了单个叔丁胺分子在Cu(111)表面的横向跃迁现象.研究发现叔丁胺分子的跳跃几率随隧道电流的增加而线性增加,这表明该过程是单电子激发过程;在不同极性的隧道结电场作用下,叔丁基胺分子跳跃行为发生的几率不同,这种现象可以用电场辅助的扩散过程解释.在不同极性电场作用下叔丁胺分子在Cu(111)表面的吸附能和扩散势垒不同,从而表现出不同的跳跃几率.  相似文献   

18.
《中国化学快报》2021,32(12):3782-3786
Series tunneling across peptides composed of various amino acids is one of the main charge transport mechanisms for realizing the function of protein. Histidine, more frequently found in redox active proteins, has been proved to be efficient tunneling mediator. While how it exactly modulates charge transport in a long peptide sequence remains poorly explored. In this work, we studied charge transport of a model peptide junction, where oligo-alanine peptide was doped by histidine at different position, and the series of peptides were self-assembled into a monolayer on gold electrode with soft EGaIn as top electrode to form molecular junction. It was found that histidine increased the overall conductance of the peptide, meanwhile, its position modulated the conductance as well. Quantitative analysis by transport model and ultraviolet photoelectron spectroscopy (UPS) indicated a sequence dependent energy landscape of the tunneling barrier of the junction. Density-functional theory (DFT) calculation on the electronic structure of histidine doped oligo-alanine peptides revealed localized highest occupied molecular orbital (HOMO) on imidazole group of the histidine, which decreased charge transport barrier.  相似文献   

19.
结合近期研究工作, 简要介绍了在溶液环境下, 利用有机分子在金属表面构筑纳米结构, 利用光化学反应方法调控所得的纳米结构, 利用电化学扫描隧道显微镜对这些结构进行观察, 及利用毛细管隧道结方法测量纳米结构电学性质的相关结果. 并展望了表面纳米结构的构筑、控制和性质研究领域的发展趋势.  相似文献   

20.
A single propene molecule, located in the junction between the tip of a scanning tunneling microscope (STM) and a Cu(211) surface can be dehydrogenated by inelastic electron tunneling. This reaction requires excitation of the asymmetric C-H stretching vibration of the ═CH(2) group. The product is then identified by inelastic electron tunneling action spectroscopy (IETAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号