首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interface between bulk water and bulk hexane solutions of n-alkanols (H(CH(2))(m)OH, where m=20, 22, 24, or 30) is studied with x-ray reflectivity, x-ray off-specular diffuse scattering, and interfacial tension measurements. The alkanols adsorb to the interface to form a monolayer. The highest density, lowest temperature monolayers contain alkanol molecules with progressive disordering of the chain from the -CH(2)OH to the -CH(3) group. In the terminal half of the chain that includes the -CH(3) group the chain density is similar to that observed in bulk liquid alkanes just above their freezing temperature. The density in the alkanol headgroup region is 10% greater than either bulk water or the ordered headgroup region found in alkanol monolayers at the water-vapor interface. We conjecture that this higher density is a result of water penetration into the headgroup region of the disordered monolayer. A ratio of 1:3 water to alkanol molecules is consistent with our data. We also place an upper limit of one hexane to five or six alkanol molecules mixed into the alkyl chain region of the monolayer. In contrast, H(CH(2))(30)OH at the water-vapor interface forms a close-packed, ordered phase of nearly rigid rods. Interfacial tension measurements as a function of temperature reveal a phase transition at the water-hexane interface with a significant change in interfacial excess entropy. This transition is between a low temperature interface that is nearly fully covered with alkanols to a higher temperature interface with a much lower density of alkanols. The transition for the shorter alkanols appears to be first order whereas the transition for the longer alkanols appears to be weakly first order or second order. The x-ray data are consistent with the presence of monolayer domains at the interface and determine the domain coverage (fraction of interface covered by alkanol domains) as a function of temperature. This temperature dependence is consistent with a theoretical model for a second order phase transition that accounts for the domain stabilization as a balance between line tension and long range dipole forces. Several aspects of our measurements indicate that the presence of domains represents the appearance of a spatially inhomogeneous phase rather than the coexistence of two homogeneous phases.  相似文献   

2.
We present a review, largely based on recent experimental work of our group, on phase transitions at interfaces of fluid metals, alloys and ionic liquids. After a brief analysis of possible experimental errors and limitations of surface sensitive methods, we first deal with first-order wetting transitions at the liquid/vapour and liquid/wall interface in systems such as Ga-based alloys, K-KCl melts, and fluid Hg. The following chapter refers to surface freezing or surface induced crystallization in different metal alloys. The respective surface phase diagrams are discussed in comparison with their bulk counterpart. In the last part we present very recent investigations of ionic liquid interfaces, including order-disorder transitions at the liquid/vapour interface and examples of two-dimensional phase transitions at the electrified ionic liquid/metal interface. Finally, a simple electrowetting experiment with an ionic liquid droplet under vacuum is described which gives new insight into the contact angle saturation problem. The article ends up with a few perspective remarks on open problems and potential impact of interfacial phenomena on applied research.  相似文献   

3.
We have performed ellipsometry and surface tensiometry at tetradecyltrimethylammonium bromide (TTAB) aqueous solution surface coexisting with tetradecane lens as a function of the molality of TTAB and the temperature under atmospheric pressure. From the theoretical analysis of the coefficient of ellipticity, it was clarified that the liquid monolayer comprising the surfactant and alkane is formed at higher surfactant concentrations by the wetting transition of tetradecane lens on the aqueous solution, and the solid monolayer is formed by lowering temperature (freezing transition). The results of the surface tension measurement support the occurrence of wetting transition and the freezing transition. A phase diagram of the wetting film was constructed by ellipsometry and surface tensiometry, of which the mixed solid monolayer had never been reported before. From the thermodynamic analysis of the phase diagram, it is also demonstrated that the TTAB surface density decreases accompanied with the freezing transition, which agrees with surface densities of TTAB calculated from surface tension vs. concentration curves.  相似文献   

4.
Alkane droplets on aqueous solutions of surfactants exhibit a first-order wetting transition as the concentration of surfactant is increased. The low-concentration or “partial wetting” state corresponds to an oil lens in equilibrium with a two-dimensional dilute gas of oil and surfactant molecules. The high-concentration or “pseudo-partial wetting” state consists of an oil lens in equilibrium with a mixed monolayer of surfactant and oil. Depending on the combination of surfactant and oil, these mixed monolayers undergo a thermal phase transition upon cooling, either to a frozen mixed monolayer or to an unusual bilayer structure in which the upper leaflet is a solid layer of pure alkane with hexagonal packing and upright chains while the lower leaflet remains a disordered liquid-like mixed monolayer. Additionally, certain long-chain alkanes exhibit a surface freezing transition at the air–oil interface where the top monolayer of oil freezes above its melting point. In this review, we summarize our previous studies and discuss how these wetting and surface freezing transitions influence the line tension of oil lenses from both an experimental and theoretical perspective.  相似文献   

5.
The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.  相似文献   

6.
In this paper we present the findings of our investigations using molecular dynamics, on molecularly thin films of n-octane confined between topographically smooth solid surfaces. We focus on the effect of increasing solid surface-methylene unit energetic affinity and the effect of increasing pressure (normal load) of the film in inducing liquid-solid phase transitions. We observed an abrupt transition in the structural features of the film at a critical value of the characteristic energy that quantified the affinity between solid surfaces and methylene units. This energetically driven transition was evident from the discontinuous increase of intermolecular order, a precipitous extension of the octane molecules and freezing of molecular migration and rotation. Increasing pressure had a similar effect in inducing a liquid-solid phase transition. The characteristics of the transition showed that it is a mild first order transition from a highly ordered liquid to a poorly organized solid. These findings demonstrate that the solidification of nanoscopically thin films of linear alkanes is a general phenomenon (driven either energetically or by increasing pressure), and does not require the aid of commensurate surface topography.  相似文献   

7.
Phase transition of a lipid-like hemicyanine compound characterized by second harmonic generation is studied carefully. The phase transition is assigned as the first order transition between solid state and liquid state. The transition temperature increases with an increase in the surface molecular concentration. A monolayer structure parameter a which is very sensitive to the phase transition is introduced.  相似文献   

8.
The equilibrium adsorption layers of symmetric chain alkyltrimethylammonium alkyl sulfates (Cn+.Cn- for n = 8, 12) were investigated at the air/water interface by sum-frequency vibrational spectroscopy in the function of the bulk surfactant concentration. To ensure the surface purity of the solutions investigated, an improved version of the foam fractionation method was used for the purification of the constituent ionic surfactants and the surface purity of the solutions was also checked. In the monolayer of the C12+.C12- surfactant, a two-dimensional first-order gas/liquid phase transition was observed. At surfactant bulk concentrations just exceeding the concentration corresponding to the phase transition, the monolayer is conformationally disordered, liquidlike, but with increasing bulk surfactant concentration the conformational order of the monolayer increases. The SFG spectra of the C8+.C8- monolayer did not indicate the occurrence of phase transition at room temperature.  相似文献   

9.
Applying the histogram Monte Carlo simulation method and the bond‐fluctuation model, various phase transitions in single‐polymer systems were investigated. The critical transition temperature (Θ point) in the coil‐globule collapse transition of a macromolecular chain is accurately determined. Finite‐size scaling results near the transition point are verified. The first‐order transition associated with the freezing/crystallization of a polymer at a temperature below the Θ point is also observed. The free energy profiles associated with these two transitions are explicitly computed. Furthermore, the unfolding phase transition associated with stretching a collapsed polymer chain is investigated. The free energy profile associated with the transition is explicitly computed. Results on the energy cumulants and free energy profiles provide direct evidences for the first‐order nature of the unfolding phase transition.  相似文献   

10.
Enhanced digital video microscopy is applied to study the equilibrium structure of a two-dimensional charged sulfate-polystyrene particle (2 mum in diameter) monolayer at decane/water interfaces. When the surface density is decreased, a sequential phase transition, pure solid phase-->pure hexatic phase-->liquid-hexatic-coexisting phase-->pure liquid phase, is observed. In addition, the transition between liquid and hexatic phases is first order, while the solid-hexatic phase transition is second order. The temperature effect on this two-dimensional melting transition is discussed by performing the experiments at three different temperatures. The Voronoi [J. Reine Angew. Math. 134, 198 (1908)] construction is applied to analyze the defect structure in the two-dimensional particle monolayer. The pair interaction potential of the two-dimensional colloidal particles is found to be a very long range repulsion and to decay with distance to the power of -3.  相似文献   

11.
In this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 microm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The main discovery is that the microencapsulated n-octadecane crystallizes into a stable triclinic phase via a mestastable rotator phase (R I), which emerges as a transient state for the bulk n-octadecane and is difficult to be detected by the commonly used characterization methods. As evident from the DSC measurement, a surface freezing monolayer, which is formed at the interface between the microcapsule inner wall and n-octadecane, induces the crossover of the R I from transient to metastable. We argue that the existence of the surface freezing monolayer decreases the nucleating potential barrier of the R I phase, and consequently the lower relative nucleation barrier in the confined geometry turns the transient R I phase into a metastable one.  相似文献   

12.
The structure and the interaction potential of monolayers of charged polystyrene microparticles at fluid interfaces have been studied by optical microscopy. Microparticles of different sizes have been studied over a broad range of surface particle densities. The structural characterization is based on the analysis of images obtained by digital optical microscopy. From the experimental images, radial distribution functions, hexagonal bond order correlation functions, and temporal orientational correlation functions have been calculated for different monolayer states at both the air/water and oil/water interfaces. The interaction potential has been calculated from the structure factor using integral equations within the hypernetted chain closure relationship. For particles trapped at the oil-water interface, it was found that, upon increasing the surface coverage, a freezing transition occurs, that leads to the formation of a 2D crystalline structure. We have studied the freezing densities of particle monolayers at the oil/water interface and compared them with Monte Carlo simulation results reported by H. Lo?wen. In contrast, at the air-water interface, freezing is inhibited due to the formation of particle aggregates.  相似文献   

13.
We present the adsorption kinetics and the surface phase behavior of n-hexadecyl dihydrogen phosphate (n-HDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). A phase diagram, which shows a triple point at about 25.8 degrees C, is constructed by measuring the surface pressure (pi)-time (t) adsorption isotherms. Below 25.8 degrees C, each of the pi-t curves shows a plateau at about zero surface pressure indicating the existence of a first-order phase transition. The BAM observation confirms the order of this phase transition by presenting two-surface phases during this plateau. However, the BAM observation also shows clearly another second-order phase transition from an isotropic phase to a mosaic-textured liquid condensed (LC) phase. The initial phase is a gas (G) phase. Considering the peculiarity of the middle phase, we suggest this phase as an intermediate (I) phase. Above the triple point, the pi-t curves predict the existence of two-step first-order phase transitions. Similar to the results at lower temperatures, the BAM images show two-surface phases during these first-order phase transitions together with a second-order phase transition from an isotropic phase to an LC phase. These transitions are classified as a first-order G-LE (liquid expanded) phase transition, which is followed by another first-order LE-I phase transition. The second-order phase transition is an I-LC phase transition. Contrary to these results, at 36 degrees C both the pi-t measurements and the BAM observation present only two first-order phase transitions, which are G-LE at zero surface pressure and LE-LC transition at higher surface pressure. The shape of the domains during the main transitions shows a peculiar change from a circular at 20 degrees C to an elongated at 24 degrees C and finally to a circular shape at 36 degrees C. Such a change in the domain shapes has been explained considering the dehydration effect at higher temperatures as well as the nature of phases.  相似文献   

14.
Vibrational sum-frequency spectroscopy (VSFS) was used to study gauche defects in octadecylamine (ODA) monolayers at the air/water interface. The VSFS spectra provide unique insights into phase transitions that occur as a result of changes in the structure of the monolayer's hydrophobic region. These changes can be attributed to the increased presence of gauche conformers in the ODA alkyl chains during the monolayer's transition from the solid to liquid phase. Temperature-dependent spectra from monolayers at several different pressures were used to assign the phase transition temperature based on the observed changes in microscopic structure. Through application of a two-dimensional form of the Clapeyron equation, the first in situ measurements of the entropy and enthalpy changes associated with gauche conformers in a monolayer were made.  相似文献   

15.
Jiang Xiaobao 《Liquid crystals》2013,40(8):1116-1120
By dividing the bulk melting entropy, a simple thermodynamic model without any adjustable parameter for the size-dependent melting transition temperature has been extended to interpret the melting and freezing transitions of liquid crystals (LCs) confined in nanopores. The results show that as the size of the nanopore decreases, the melting, clearing and freezing transition temperatures of LCs drop. The transition temperatures directly depend on the density of hydrogen bond at the interface between inner pore wall and LC molecules. The model predictions agree well with the corresponding experimental results of LCs p-azoxyanisole and 4-pentyl-4′-cyanobiphenyl confined in nanopores.  相似文献   

16.
Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.  相似文献   

17.
The mechanisms of interactions between calix[4]resorcinarene and dopamine in monolayers formed at the air-water interface were studied by analyzing their mechanical, thermodynamic, and electrical properties evaluated from measurements of pressure-area isotherms and Maxwell displacement currents (MDCs). An increased concentration of dopamine in the water subphase resulted in an increase in the area per calix[4]resorcinarene molecule, an increase in the collapse pressure, and a shift in the monolayer phase transitions from the gaseous to the liquid state and from the liquid to the solid state toward higher molecular areas. A contactless method of recording MDCs enabled the monitoring of changes in the charge state of the monolayer-constituting molecules and the determination of a relationship between the phase state of the monolayer and the structural transitions of calix[4]resorcinarene. The changes of the MDC recordings started already in the gaseous state of the monolayer. On the basis of MDC values, we determined the normal component of the dipole moment of calix[4]resorcinarene, as well as that of its complex with dopamine. The dipole moment reached a maximum value of 1040 mD in the region of the phase transition from the liquid to the solid state of the monolayer. The results obtained suggest that the binding of dopamine with calix[4]resorcinarene depends on the orientation of the calixarene molecules in the monolayer. The calix[4]resorcinarene-dopamine interactions were also quantified in terms of the excess of Gibbs free energy, thereby allowing the evaluation of the energy of the calix [4]resorcinarene-dopamine bond, which was in the range from 1.95 to 8.54 kJ/mol depending on the surface pressure. This value implies weak interactions between these molecules.  相似文献   

18.
We report that specific binding of ligand-functionalized (biotinylated) phospholipid vesicles (diameter = 120 ± 19 nm) to a monolayer of proteins (streptavidin or anti-biotin antibody) adsorbed at an interface between an aqueous phase and an immiscible film of a thermotropic liquid crystal (LC) [nematic 4'-pentyl-4-cyanobiphenyl (5CB)] triggers a continuous orientational ordering transition (continuous change in the tilt) in the LC. Results presented in this paper indicate that, following the capture of the vesicles at the LC interface via the specific binding interaction, phospholipids are transferred from the vesicles onto the LC interface to form a monolayer, reorganizing and partially displacing proteins from the LC interface. The dynamics of this process are accelerated substantially by the specific binding event relative to a protein-decorated interface of a LC that does not bind the ligands presented by the vesicles. The observation of the continuous change in the ordering of the LC, when combined with other results presented in this paper, is significant, as it is consistent with the presence of suboptical domains of proteins and phospholipids on the LC interface. An additional significant hypothesis that emerges from the work reported in this paper is that the ordering transition of the LC is strongly influenced by the bound state of the protein adsorbed on the LC interface, as evidenced by the influence on the LC of (i) "crowding" of the protein within a monolayer formed at the LC interface and (ii) aging of the proteins on the LC interface. Overall, these results demonstrate that ordering transitions in LCs can be used to provide fundamental insights into the competitive adsorption of proteins and lipids at oil-water interfaces and that LC ordering transitions have the potential to be useful for reporting specific binding events involving vesicles and proteins.  相似文献   

19.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

20.
A molecular theory of phase transitions in fatty acid monolayers at the air/water interface is proposed based on rotational ordering of molecules about their longitudinal axes. The first order statistical mechanical lattice model of Bell, Mingins, and Taylor (BMT ) which is an equilibrium diluted Ising model is used to describe the monolayer behavior of some simple aliphatic carboxylic acids. The interaction energy parameters in the BMT model are adjusted to give reasonable agreement with the experimentally observed chain length dependence, and the energies thus obtained are compared with those calculated for interacting aliphatic carboxylic acid dimers by the technique of perturbative configuration interaction using localized orbitals (PCILO ). It is concluded that intermolecular rotational ordering due to the anisotropy of the intermolecular potential plays a significant role in simple fatty acid monolayer phase behavior. A possible experimental test of the model is briefly described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号