首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum chemical calculations were applied to investigate the electronic structure of mono-, di-, and tri- lithiated triatomic germanium (Ge3Lin) and their cations (n = 0-3). Computations using a multiconfigurational quasi-degenerate perturbation approach (MCQDPT2) based on complete active space CASSCF wavefunctions, MRMP2 and density functional theory reveal that Ge3Li has a 2A' ground state with a doublet-quartet gap of 24 kcal/mol. Ge3Li2 has a singlet ground state with a singlet-triplet (3A' '-1A1) gap of 30 kcal/mol, and Ge3Li3 a doublet ground state with a doublet-quartet (4A' '-2A') separation of 16 kcal/mol. The cation Ge3Li+ has a 1A' ground state, being 18 kcal/mol below the 3A' state. The computed electron affinities for triatomic germanium are EA(1) = 2.2 eV (experimental value is 2.23 eV), EA(2) = -2.5 eV, and EA(3) = -5.9 eV, for Ge3-, Ge32-, and Ge33-, respectively, indicating that only the monoanion is stable with respect to electron detachment, in such a way that Ge3Li is composed of Ge3-Li+ ions. An atoms in molecules (AIM) analysis shows the absence of a Ge-Ge-Li ring critical point in Ge3Li. An electron localization function (ELF) map of Ge3Li supports the view that the Ge-Li bond is predominantly ionic; however, a small covalent character could be anticipated from the Laplacian at the Ge-Li bond critical point. The ionic picture of the Ge-Li bond is further supported by the natural bond orbital (NBO) results. The calculated Li affinity value for Ge3 is 2.17 eV, and the Li+ cation affinity value for Ge3- amounts to 5.43 eV. The larger Li+ cation affinity of Ge3- favors an electron transfer, resulting in a Ge3-Li+ interaction.  相似文献   

2.
Quantum chemical calculations were applied to investigate the electronic structure of germanium hydrides, Ge(n)H (n = 1, 2, 3), their cations, and anions. Computations using a multiconfigurational quasi-degenerate perturbation approach (MCQDPT2) based on complete active space wave functions (CASSCF), multireference perturbation theory (MRMP2), and density functional theory reveal that Ge(2)H has a (2)B(1) ground state with a doublet-quartet gap of approximately 39 kcal/mol. A quasidegenerate (2)A(1) state has been derived to be 2 kcal/mol above the ground state (MCQDPT2/aug-cc-pVTZ). In the case of the cation Ge(3)H(+) and anion Ge(3)H(-), singlet low-lying electronic states are derived, that is, (1)A' and (1)A(1), respectively. The singlet-triplet energy gap is estimated to 6 kcal/mol for the cation. An "Atoms in Molecules" (AIM) analysis shows a certain positive charge on the Ge(n) (n = 1, 2, 3) unit in its hydrides, in accordance with the NBO analysis. The topologies of the electron density of the germanium hydrides are different from that of the lithium-doped counterparts. On the basis of our electron localization function (ELF) analysis, the Ge-H bond in Ge(2)H is characterized as a three-center-two-electron bond. Some key thermochemical parameters of Ge(n)H have also been derived.  相似文献   

3.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

4.
The 351.1 nm photoelectron spectrum of imidazolide anion has been measured. The electron affinity (EA) of the imidazolyl radical is determined to be 2.613 +/- 0.006 eV. Vibrational frequencies of 955 +/- 15 and 1365 +/- 20 cm(-1) are observed in the spectrum of the (2)B1 ground state of the imidazolyl radical. The main features in the spectrum are well-reproduced by Franck-Condon simulation based on the optimized geometries and the normal modes obtained at the B3LYP/6-311++G(d,p) level of density functional theory. The two vibrational frequencies are assigned to totally symmetric modes with C-C and N-C stretching motions. Overtone peaks of an in-plane nontotally symmetric mode are observed in the spectrum and attributed to Fermi resonance. Also observed is the photoelectron spectrum of the anion formed by deprotonation of imidazole at the C5 position. The EA of the corresponding radical, 5-imidazolyl, is 1.992 +/- 0.010 eV. The gas phase acidity of imidazole has been determined using a flowing afterglow-selected ion tube; delta(acid)G298 = 342.6 +/- 0.4 and delta(acid)H298 = 349.7 +/- 0.5 kcal mol(-1). From the EA of imidazolyl radical and gas phase acidity of imidazole, the bond dissociation energy for the N-H bond in imidazole is determined to be 95.1 +/- 0.5 kcal mol(-1). These thermodynamic parameters for imidazole and imidazolyl radical are compared with those for pyrrole and pyrrolyl radical, and the effects of the additional N atom in the five-membered ring are discussed.  相似文献   

5.
The 351.1 nm photoelectron spectra of the N-methyl-5-pyrazolide anion and the N-methyl-5-imidazolide anion are reported. The photoelectron spectra of both isomers display extended vibrational progressions in the X2A' ground states of the corresponding radicals that are well reproduced by Franck-Condon simulations, based on the results of B3LYP/6-311++G(d,p) calculations. The electron affinities of the N-methyl-5-pyrazolyl radical and the N-methyl-5-imidazolyl radical are 2.054 +/- 0.006 eV and 1.987 +/- 0.008 eV, respectively. Broad vibronic features of the A(2)A' ' states are also observed in the spectra. The gas-phase acidities of N-methylpyrazole and N-methylimidazole are determined from measurements of proton-transfer rate constants using a flowing afterglow-selected ion flow tube instrument. The acidity of N-methylpyrazole is measured to be Delta(acid)G(298) = 376.9 +/- 0.7 kcal mol(-1) and Delta(acid)H(298) = 384.0 +/- 0.7 kcal mol(-1), whereas the acidity of N-methylimidazole is determined to be Delta(acid)G(298) = 380.2 +/- 1.0 kcal mol(-1) and Delta(acid)H(298)= 388.1 +/- 1.0 kcal mol(-1). The gas-phase acidities are combined with the electron affinities in a negative ion thermochemical cycle to determine the C5-H bond dissociation energies, D(0)(C5-H, N-methylpyrazole) = 116.4 +/- 0.7 kcal mol(-1) and D(0)(C5-H, N-methylimidazole) = 119.0 +/- 1.0 kcal mol(-1). The bond strengths reported here are consistent with previously reported bond strengths of pyrazole and imidazole; however, the error bars are significantly reduced.  相似文献   

6.
The equilibrium structures and physical properties of the X (1)sigma(+) linear electronic states, linear excited singlet and triplet electronic states of hydroboron monoxide (HBO) (A (1)sigma(-), B (1)delta, a (3)sigma(+), and b (3)delta) and boron hydroxide (BOH) (A (1)sigma(+), B (1)Pi, and b (3)Pi), and their bent counterparts (HBO a (3)A('), b (3)A("), A (1)A("), B (1)A(') and BOH X (1)A('), b (3)A('), c (3)A("), A (1)A('), B (1)A('), C (1)A(")) are investigated using excited electronic state ab initio equation-of-motion coupled-cluster (EOM-CC) methods. A new implementation of open-shell EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled-cluster wave functions with single and double excitations (CCSD), single, double, and iterative partial triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed with the correlation-consistent quadruple and quintuple zeta basis sets. The linear HBO X (1)sigma(+) state is predicted to lie 48.3 kcal mol(-1) (2.09 eV) lower in energy than the BOH X (1)sigma(+) linear stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted to lie 3.7 kcal mol(-1) (0.16 eV). With a harmonic zero-point vibrational energy correction, the HBO X (1)sigma(+)-BOH X (1)A(') energy difference is 45.2 kcal mol(-1) (1.96 eV). The lowest triplet excited electronic state of HBO, a (3)A('), has a predicted excitation energy (T(e)) of 115 kcal mol(-1) (4.97 eV) from the HBO ground state minimum, while the lowest-bound BOH excited electronic state, b (3)A('), has a T(e) of 70.2 kcal mol(-1) (3.04 eV) with respect to BOH X (1)A('). The T(e) values predicted for the lowest singlet excited states are A (1)A(")<--X (1)sigma(+)=139 kcal mol(-1) (6.01 eV) for HBO and A (1)A(')<--X (1)A(')=102 kcal mol(-1) (4.42 eV) for BOH. Also for BOH, the triplet vertical transition energies are b (3)A(')<--X (1)A(')=71.4 kcal mol(-1) (3.10 eV) and c (3)A(")<--X (1)A(')=87.2 kcal mol(-1) (3.78 eV).  相似文献   

7.
Ab initio electronic structure calculations are reported for S4. Geometric and energetic parameters are calculated using the singles and doubles coupled-cluster method, including a perturbutional correction for connected triple excitation, CCSD(T), together with systematic sequences of correlation consistent basis sets extrapolated to the complete basis set limit. The geometry for the ground state singlet C2v structure of S4 is in good agreement with the microwave structure determined for S4. There is a low-lying D2h transition state at 1.6 kcal/mol which interchanges the long S-S bond. S4 has a low-lying triplet state (3B 1u) in D2h symmetry which is 10.8 kcal/mol above the C2v singlet ground state. The S-S bond dissociation energy for S4 into two S2(3Sigma*g) molecules is predicted to be 22.8 kcal mol(-1). The S-S bond energy to form S3+S(3P) is predicted to be 64 kcal/mol.  相似文献   

8.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

9.
We have investigated the electronic structure of 14 states of the experimentally unknown diatomic molecule chromium carbide, CrC, using standard multireference configuration interaction methods and high quality basis sets. We report potential curves, binding energies, and a number of spectroscopic parameters. The ground state of CrC, X 3Sigma-, displays triple-bond character with a binding energy of D(e)=89 kcal/mol and an internuclear separation of r(e)=1.63 A. The first excited state (1 5Sigma-) lies 9.2 kcal/mol higher. All the states studied are fairly ionic, featuring an electron transfer of 0.3-0.5e- from the metal atom to the carbon atom.  相似文献   

10.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

11.
The radical anion of the highly pyramidalized alkene 1,5-dehydroquadricyclane (1) was generated in the gas phase from the Squires reaction of 1,5-bis(trimethylsilyl)quadricyclane with F-/F2. The electron binding energy and proton affinity of 1*- were determined by bracketing experiments to be 0.6 +/- 0.1 eV and 386 +/- 5 kcal/mol, respectively. These values are in good agreement with values predicted by density functional theory (B3LYP/6-31+G*) and ab initio (CASPT2/6-31+G*) calculations. The experimental heat of hydrogenation of 1, obtained from a thermochemical cycle, was found to be 91 +/- 9 kcal/mol. This value of deltaH(H2) leads to values of 67 +/- 9 kcal/mol for the olefin strain energy (OSE) of 1, 172 +/- 9 kcal/mol for its heat of formation, and 23 +/- 9 kcal/mol for its pi bond dissociation enthalpy. Since the retro-Diels-Alder reaction of neutral 1 is computed to be highly exothermic, the finding that 1*- apparently does not undergo a retro-Diels-Alder reaction is of particular interest. The B3LYP/6-31+G* optimized geometry of 1 suggests that the bonding in this alkene is partially delocalized, presumably because the highly pyramidalized double bond in 1 interacts with the distal cyclopropane bonds in a manner that eventually leads to a retro-Diels-Alder reaction. The good agreement of the B3LYP and (2/2)CASPT2 values for the heat of hydrogenation and OSE of 1 with the experimentally derived values provides indirect evidence for the correctness of the B3LYP prediction that the equilibrium geometry of 1 lies part way along the reaction coordinate to the transition structure for the retro-Diels-Alder reaction.  相似文献   

12.
Novel cyclopentadienyl (Cp)-alkali metal complexes 1-M and 2-M (M = Li, Na, K), in which the Cp ring is annelated with two bicyclo[2.2.2]octene units and substituted with a phenyl group for 1 and a tert-butyl group for 2, were synthesized, and their structures and dynamic behaviors were investigated by means of X-ray crystallography, dynamic (13)C NMR, and DFT calculations. The X-ray crystallography results indicated that 1-Li, 1-Na, and 2-Na form monomeric contact ion pairs (CIP) with three THF molecules coordinated to the metal atom. Also, in THF-d(8), all of the 1-M and 2-M form monomeric CIP in the ground state. However, variable-temperature (13)C NMR measurements of 1-M and 2-M in THF-d(8) demonstrated dynamic behavior in which the metal ion exchanges positions between the upper and lower faces of the Cp ring. From a study of the concentration dependence of the dynamic behavior, the exchange was found to proceed principally as an intramolecular process at concentration ranges lower than 0.2 M. The experimentally observed deltaG values for the intramolecular exchange process for all the 1-M and 2-M (except for 2-Li, whose intramolecular process was too slow to observe) were found to be quite similar in THF-d(8) solution and to fall within the range of 12-14 kcal mol(-)(1). Within this range, a tendency was observed for the deltaG values to increase as the size of the metal decreased. Theoretical calculations (B3LYP/6-31G(d)) afforded considerably large values as the gas-phase dissociation energy for 1-M (162.7 kcal mol(-)(1) for M = Li; 131.6 kcal mol(-)(1) for M = Na; 110.9 kcal mol(-)(1) for M = K) and for 2-M (170.0 kcal mol(-)(1) for M = Li; 137.5 kcal mol(-)(1) for M = Na; 115.4 kcal mol(-)(1) for M = K). These values should be compensated for by a decrease in the solvation energies for the metal ions with increasing size, as exemplified by the calculated solvation energy for M(+)(Me(2)O)(4), which serves as a model for metal ions solvated with four molecules of THF (-122.9 kcal mol(-)(1) for M = Li; -94.7 kcal mol(-)(1) for M = Na; -67.7 kcal mol(-)(1) for M = K). This compensation results in a small difference in the overall energy for dissociation of 1-M or 2-M in ethereal solutions, thus supporting the similar deltaG values observed for the intramolecular metal exchange.  相似文献   

13.
During photoelectron spectroscopy experiments, the spectra of B(11)O(-) and B(10)Au(-) clusters are found to exhibit similar patterns except for a systematic spectral shift of ~0.5 eV, hinting that they possess similar geometric structures. The electron affinities are measured to be 4.02 ± 0.04 eV for B(11)O and 3.55 ± 0.02 eV for B(10)Au. DFT calculations at the B3LYP level show that B(11)O(-) and B(10)Au(-) adopt similar C(1) ((1)A) ground states, which are based on the quasiplanar B(10) cluster interacting with a BO unit and Au, respectively. The B(11)O(-) and B(10)Au(-) clusters are thus valent isoelectronic because both BO and Au can be viewed as monovalent units, forming highly covalent B-BO and B-Au bonds analogous to the B-H bond in B(10)H(-). For B(10)Au(-), we also find a highly symmetric D(10h) ((1)A(1g)) planar molecular wheel as a minimum on the potential energy surface. However, it is 45 kcal/mol above the ground state at the B3LYP level and not viable for experimental observation. Natural bond orbital analyses reveal interesting covalent versus ionic B-Au bonding in the C(1) B(10)Au(-) and D(10h) B(10)Au(-) structures, respectively, providing insight for the design of D(nh) MB(n) molecular wheels.  相似文献   

14.
The acidities of the two different sites in naphthalene (1alpha and 1beta) and the electron affinities of the alpha- and beta-naphthyl radicals were measured using a Fourier transform mass spectrometer. Both carbon-hydrogen bond dissociation energies for naphthalene also were obtained, in this case via the application of a thermodynamic cycle. The final results are DeltaH(o)acid (1alpha) = 394.2+/-1.2 kcal mol(-1), DeltaH(o)acid (1beta) = 395.5+/-1.3 kcal mol(-1), EA(alpha) = 31.6+/-0.5 kcal mol(-1), EA(beta) = 31.6+/-0.5 kcal mol(-1), BDE(1alpha) = 112.2+/-1.3 kcal mol(-1) and BDE(1alpha) = 111.9+/-1.4 kcal mol(-1), and they are compared to benzene and phenyl radical as well as ab initio and density functional theory (B3LYP) calculations.  相似文献   

15.
The electronic and geometric structures of gallium dinitride cation, GaN2+ and gallium tetranitride cation, GaN4+ were systematically studied by employing density functional theory (DFT-B3LYP) and perturbation theory (MP2, MP4) in conjunction with large basis sets, (aug-)cc-pVxZ, x = T, Q. A total of 7 structures for GaN2+ and 24 for GaN4+ were identified, corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces, and bonding mechanisms for some low-lying electronic states. The calculated dissociation energy (De) of the ground state of GaN2+, X1Sigma+, is 5.6 kcal/mol with respect to Ga+(1S) + N2(X1Sigmag+) and that of the excited state, ?3Pi, is 24.8 kcal/mol with respect to Ga+(3P) + N2(X1Sigmag+). The ground state and the first excited minimum of GaN4+ are of 1A1(C2v) and 3B1(C2v) symmetry with corresponding De of 11.0 and 43.7 kcal/mol with respect to Ga+(1S) + 2N2(X1Sigmag+) for X1A1 and Ga+(3P) + 2N2(X1Sigmag+) for 3B1.  相似文献   

16.
Quantum chemical calculations have been carried out to determine the electronic ground state of the parent 1,3,5-triaminobenzene trication triradical (TAB3+,C6H9N3 3+) containing a six-membered benzene ring coupled with three exocyclic amino NH(*+)2 groups, each containing an unpaired electron, as the simplest model for high-spin polyarylamine polycations. Related triradicals, including the 1,3,5-trimethylenebenzene (TMB, C9H9) and its nitrogen derivatives such as the monocation C8H9N+, the dication C7H9N2 2+, and the neutral C8H8N, C7H7N2, and C6H6N3 systems containing NH groups, have also been considered. Results obtained using the CASSCF [multiconfigurational complete active space (SCF--self-consistent field)] method, with active spaces ranging from (9e/9o) to (15e/12o), followed by second-order perturbation theory [CASPT2 and MS-CASPT2 (MS--multistate)] with polarized 6-311G(d,p) and natural orbital (ANO-L) basis sets reveal the following: (i) both TAB3+ and TMB (D3h) have a quartet 4A"1 ground state with doublet-quartet 2B1-4A"1 energy gaps of 8.0+/-2.0 and 12.4+/-2.0 kcal/mol, respectively; (ii) in the neutral N series, the quartet state remains the electronic ground state, irrespective of the number of N atoms, but each with slightly reduced gap, 11 kcal/mol for C8H8N (4A"), 10 kcal/mol for C7H7N2 (4A2), and 9 kcal/mol for C6H6N3 (4A2); and (iii) the ground state of monoamino cation and diamino dication is a low-spin doublet state (2B1 for C8H9N+ and 2A2 for C7H9N2 2+) and lying well below the corresponding quartet state by 10 and 12 kcal/mol, respectively. In the monocationic and dicationic amino systems, a slight preference is found for the low-spin state, apparently violating Hund's rule. This effect is due to the splitting of the orbital energies and the presence of the positive charge whose delocalization strongly modifies the electronic distribution and some structural features. In the latter cations, the positive charge basically pushes unpaired electrons onto the ring forming a kind of distonic radical cations and thus gives a preference for a low-spin state.  相似文献   

17.
The 351.1 nm photoelectron spectrum of 1-pyrazolide anion has been measured. The 1-pyrazolide ion is produced by hydroxide (HO(-)) deprotonation of pyrazole in a flowing afterglow ion source. The electron affinity (EA) of the 1-pyrazolyl radical has been determined to be 2.938 +/- 0.005 eV. The angular dependence of the photoelectrons indicates near-degeneracy of low-lying states of 1-pyrazolyl. The vibronic feature of the spectrum suggests significant nonadiabatic effects in these electronic states. The gas phase acidity of pyrazole has been determined using a flowing afterglow-selected ion flow tube; Delta(acid)G(298) = 346.4 +/- 0.3 kcal mol(-1) and Delta(acid)H(298) = 353.6 +/- 0.4 kcal mol(-1). The N-H bond dissociation energy (BDE) of pyrazole is derived to be D(0)(pyrazole, N-H) = 106.4 +/- 0.4 kcal mol(-1) from the EA and the acidity using a thermochemical cycle. In addition to 1-pyrazolide, the photoelectron spectrum demonstrates that HO(-) deprotonates pyrazole at the C5 position to generate a minor amount of 5-pyrazolide anion. The photoelectron spectrum of 5-pyrazolide has been successfully reproduced by a Franck-Condon (FC) simulation based on the optimized geometries and the normal modes obtained from B3LYP/6-311++G(d,p) electronic structure calculations. The EA of the 5-pyrazolyl radical is 2.104 +/- 0.005 eV. The spectrum exhibits an extensive vibrational progression for an in-plane CCN bending mode, which indicates a substantial difference in the CCN angle between the electronic ground states of 5-pyrazolide and 5-pyrazolyl. Fundamental vibrational frequencies of 890 +/- 15, 1110 +/- 35, and 1345 +/- 30 cm(-1) have been assigned for the in-plane CCN bending mode and two in-plane bond-stretching modes, respectively, of X (2)A' 5-pyrazolyl. The physical properties of the pyrazole system are compared to the isoelectronic systems, pyrrole and imidazole.  相似文献   

18.
C(2)H(3)(35)Cl+ in the ground vibronic state was generated by one-photon mass-analyzed threshold ionization spectrometry, and its photodissociation in the 461-406 nm range was investigated. Ionization energy to the ground state of C(2)H(3)(35)Cl+ was 10.0062 +/- 0.0006 eV while its B state onset was higher by 2.7456 +/- 0.0003 eV. A vibrational spectrum of the cation in the B state obtained by recording the product ion yield as a function of wavelength was analyzed by referring to the quantum chemical results at the TDDFT/B3LYP/6-311++(df,pd) level. Analysis of product time-of-flight profiles recorded with different laser polarization angles showed that the dissociation pathway for the cation in the B state changed with the vibrational energy, from internal conversion to X and statistical dissociation therein to curve crossing to C and repulsive dissociation therein. B --> C curve crossing seemed to occur along a direction close to the C-Cl bond stretch.  相似文献   

19.
Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.  相似文献   

20.
Quantum-state-resolved reactive-scattering dynamics of F+D(2)O-->DF+OD have been studied at E(c.m.)=5(1) kcal/mol in low-density crossed supersonic jets, exploiting pulsed discharge sources of F atom and laser-induced fluorescence to detect the nascent OD product under single-collision conditions. The product OD is formed exclusively in the v(OD)=0 state with only modest rotational excitation ( =0.50(1) kcal/mol), consistent with the relatively weak coupling of the 18.1(1) kcal/mol reaction exothermicity into "spectator" bond degrees of freedom. The majority of OD products [68(1)%] are found in the ground ((2)Pi(32) (+/-)) spin-orbit state, which adiabatically correlates with reaction over the lowest and only energetically accessible barrier (DeltaE( not equal) approximately 4 kcal/mol). However, 32(1)% of molecules are produced in the excited spin-orbit state ((2)Pi(12) (+/-)), although from a purely adiabatic perspective, this requires passage over a DeltaE( not equal) approximately 25 kcal/mol barrier energetically inaccessible at these collision energies. This provides unambiguous evidence for nonadiabatic surface hopping in F+D(2)O atom abstraction reactions, indicating that reactive-scattering dynamics even in simple atom+polyatom systems is not always isolated on the ground electronic surface. Additionally, the nascent OD rotational states are well fitted by a two-temperature Boltzmann distribution, suggesting correlated branching of the reaction products into the DF(v=2,3) vibrational manifold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号