首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent measurements of the emission spectrum of phthalocyanine solvated in superfluid helium nanodroplets exhibit a constant 10.3 cm(-1) splitting of each emission line relative to the absorption spectrum. This splitting has been attributed to two distinct helium environments near the surface of the phthalocyanine molecule. Rigid-body path-integral Monte Carlo provides a means of investigating the origin of the splitting on a detailed microscopic level. Path-integral Monte Carlo simulations of 4He(N)-phthalocyanine at 0.625 K with N ranging from 24 to 150 show two distinct helium configurations. One configuration is commensurate with the molecular substrate and the other is a triangular lattice. We investigate the energetics of these two configurations and use a method for calculating electronic spectral shifts for aromatic molecule-rare-gas clusters due to dispersive interactions to estimate the spectral splitting that would arise from the two helium configurations seen for N=150. The results are in reasonable agreement with the experimentally measured splitting, supporting the existence of two distinct local helium environments near the surface of the molecule in the nanodroplets.  相似文献   

2.
In order to study the dynamics of double photoionization of helium, we report new coincidence measurements between low energy electrons and doubly charged ions, from 78 to 95 eV photon energy. We show that the range of validity of the Wannier theory depends upon the observable. For the exponentn of the threshold law, this range amounts to some 3 eV above onset, thus confirming previous published experimental work. In contrast, the energy distribution of the two outgoing electrons is found flat, within 20%, in agreement with the theoretical predictions, but in a 15 eV energy range above threshold.  相似文献   

3.
In this paper, we discuss the electronic structure of alkali dimer molecules in 3Pig states on the surface of a helium droplet. The perturbation due to the droplet will in general not satisfy rotational symmetry around the internuclear axis of the diatom and thus, in addition to a broadening and blue shift, will cause a splitting of electronic levels that are degenerate in the free molecules. We propose a model based on general symmetry arguments and on a small number of physically reasonable parameters. We demonstrate that such a model accounts for the essential features of laser-induced fluorescence (LIF) and magnetic circular dichroism (MCD) spectra of the (1)3Pig-a3Sigma+ transition of Rb2 and K2. Furthermore the MCD spectra, analyzed according to the approach of Langford and Williamson [J. Phys. Chem. A 1998, 102, 2415], allow a determination of the populations of Zeeman sublevels in the ground state and thus a measurement of the surface temperature of the droplet. The latter agrees with the accepted temperature, 0.37 K, measured in the interior of a droplet.  相似文献   

4.
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).  相似文献   

5.
Ionization dynamics of free C60 is investigated after single photon excitation with synchrotron radiation in the energy range between 8.9 eV and 27.6 eV. Upper limits for the time constants describing possible delayed ionization are obtained from peak shape asymmetries in time of flight spectra as a function of excitation energy. The results clearly indicate that delayed ionization is not observed after single photon excitation in contrast to the results obtained in ns-laser MPI experiments.  相似文献   

6.
Within the diffusion Monte Carlo approach, we have determined the structure of isotopically pure and mixed helium droplets doped with one magnesium atom. For pure (4)He clusters, our results confirm those of Mella et al. [J. Chem. Phys. 123, 054328 (2005)] that the impurity experiences a transition from a surface to a bulk location as the number of helium atoms in the droplet increases. Contrarily, for pure (3)He clusters Mg resides in the bulk of the droplet due to the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also obtained the absorption spectrum of Mg around the 3s3p?(1)P(1) ← 3s(2)?(1)S(0) transition.  相似文献   

7.
Visible absorption spectra of cesium-doped helium nanodroplets between 14,500 and 17,600 cm(-1) were probed by laser-induced fluorescence. A strong absorption band peaking around 16,700 cm(-1) is identified as Cs2 1(a) 3Sigmau+-3 3Sigmag+ transition. A broad unstructured band near 17,520 cm(-1) is assigned as the Cs2 1(X) 1Sigmag+-2 1Sigmau+ transition. Explanations of the observations are discussed on the basis of ab initio potential curves calculated by Spies and Meyer [(unpublished)]. All spectra have been modeled using narrow Frank-Condon windows around the equilibrium internuclear distance of the lowest singlet and triplet states. Many observed absorption peaks of smaller intensities could be identified, some of which may be due to transitions of cesium trimers formed on the droplets.  相似文献   

8.
The photoionization and photoelectron spectroscopy of pure He droplets were investigated at photon energies between 24.6 eV (the ionization energy of He) and 28.0 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, where there is significant production of clusters with more than 10(4) atoms, the photoelectron images are dominated by fast electrons produced via direct ionization, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons from the droplets have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a "dimer model", in which one assumes vertical ionization from two nearest-neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanisms for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.  相似文献   

9.
We investigate coherent correlation between nonadiabatic rotational excitation and angle-dependent ionization of NO in intense laser fields in the state-resolved manner. When neutral NO molecules are partly ionized in intense laser fields (I(0) > 35 TW/cm(2)), a hole in the rotational wave packet of the remaining neutral NO is created because of the ionization rate depending on the alignment angle of the molecular axis with respect to the laser polarization direction. Rotational state distributions of NO are experimentally observed, and then the characteristic feature that the population at higher J levels is increased by the ionization can be identified. Numerical calculation for solving time-dependent rotational Schro?dinger equations including the effect of the ionization is carried out. The numerical results suggest that NO molecules aligned perpendicular to the laser polarization direction are dominantly ionized at the peak intensity of I(0) = 42 TW/cm(2), where the multiphoton ionization is preferred rather than the tunneling ionization.  相似文献   

10.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

11.
We have measured quantum states of the solvent-solute system of phthalocyanine in superfluid helium droplets in a high resolution pump-probe experiment. This provides evidence for the attribution of a splitting effect in the emission spectra of phthalocyanine in helium droplets to the relaxation of the first helium layer upon electronic excitation, measured recently by us. Our experimental results are a strong indication for the first helium layer playing a key roll for the solvation of molecules in helium droplets and, thus, for their spectroscopic features.  相似文献   

12.
Experimental and theoretical investigations of the spectroscopy of molecules in superfluid helium droplets provide evidence for the key role of the first helium layer surrounding the dopant molecule in determining the molecule's spectroscopic features. Recent investigations of emission spectra of phthalocyanine in helium droplets revealed a doubling of all transitions. Herein, we present the emission spectra of Mg-phthalocyanine and of phthalocyanine-argon clusters in helium droplets, which confirm the splitting as a general effect of the helium environment. A scheme of levels is deduced from the emission spectra and attributed to quantized states of the first helium layer surrounding the dopant molecule.  相似文献   

13.
The unique conditions forming atomic and molecular complexes and clusters using superfluid helium nanodroplets have opened up an innovative route for studying the physical and chemical properties of matter on the nanoscale. This review summarizes the specific characteristics of the formation of atomic clusters partly generated far from equilibrium in the helium environment. Special emphasis is on the optical response, electronic properties as well as dynamical processes which are mostly affected by the surrounding quantum matrix. Experiments include the optical induced response of isolated cluster systems in helium under quite different excitation conditions ranging from the linear regime up to the violent interaction with a strong laser field leading to Coulomb explosion and the generation of highly charged atomic fragments. The variety of results on the outstanding properties in the quantum size regime highlights the peculiar capabilities of helium nanodroplet isolation spectroscopy.  相似文献   

14.
Photoelectron spectra of neutral silver trimers, grown in ultracold helium nanodroplets, are recorded after ionization with laser pulses via a strong optical resonance of this species. Varying the photon energy reveals that direct vertical two-photon ionization is hindered by a rapid relaxation into the lower edge of a long-living excited state manifold. An analysis of the ionization threshold of the embedded trimer yields an ionization potential of 5.74+/-0.09 eV consistent with the value found in the gas phase. The asymmetrical form of the electron energy spectrum, which is broadened toward lower kinetic energies, is attributed to the influence of the matrix on the photoionization process. The lifetime of the excited state was measured in a two-color pump-probe experiment to be 5.7+/-0.6 ns.  相似文献   

15.
Helium droplets of approximately 104–108 atoms have been produced in free jet expansions of liquid helium through a 5 μm nozzle into vacuum. The size distributions of the positively and negatively charged droplets were measured as a function of the electron emission current. A simple model has been developed to describe the charging process and formulas for production of singly and doubly charged droplets were derived. The ratio of the ionization cross section to the geometrical cross section and its dependence on N was obtained. In the experiment single negatively and positively charged droplets were observed. Only for sizes N larger than a certain threshold size N th ≈ 2 × 105 the positively charged droplets were found to be doubly ionized. These observations are in good agreement with the assumption, that the positively charge carriers are stable “snowballs” while the negative droplets contain an excess electron located in the inside within a metastably bound “bubble”. The threshold size N th corresponds to a simple model in which for smaller droplets a positively charged cluster of about 50 atoms is ejected.  相似文献   

16.
We investigated how chemical equilibria are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF) and phase Doppler anemometry (PDA). The motivation for this study was the increasing number of publications in which electrospray ionization mass spectrometry is used for binding constant determination. The PDA was used to monitor droplet size and velocity, whereas LIF was used to monitor fluorescent analytes within the electrospray droplets. Using acetonitrile as solvent, we found an average initial droplet diameter of 10 microm in the electrospray. The PDA allowed us to follow the evolution of these droplets down to a size of 1 microm. Rhodamine B-sulfonylchloride was used as a fluorescent analyte within the electrospray. By spatially resolved LIF it was possible to probe the dimerization equilibrium of this dye. Measurements at different spray positions showed no influence of the decreasing droplet size on the monomer-dimer equilibrium. However, with the fluorescent dye pair DCM and oxazine 1 it was shown that a concentration increase does occur within electrosprayed droplets, using fluorescence resonance energy transfer as a probe for the average pair distance.  相似文献   

17.
The nu(5)+nu(9) spectra of ethylene, C(2)H(4), and its dimer, solvated in helium nanodroplets, have been recorded in the wavelength region near 1.6 microm. The monomer transitions show homogeneous broadening of approximately 0.5 cm(-1), which is interpreted as due to an upper state vibrational relaxation lifetime of approximately 10 ps. Nearly resonant vibrational energy transfer (nu(5)+nu(9)-->2nu(5)) is proposed as the relaxation pathway. The dimer gives a single unresolved absorption feature located 4 cm(-1) to the red of the monomer band origin. The scaling of moments of inertia upon solvation in helium is 1.18 for the monomer and >2.5 for the dimer. In terms of the adiabatic following approximation, this classifies the monomer as a fast rotor and the dimer as a slow rotor.  相似文献   

18.
19.
The excitation of H(1s–2s) and He(11 S–21 S) by electron impact in the presence of a nonresonant laser field is studied in the framework of the perturbation theory. The wavelength variation of the total cross section is presented at incident electron energies of 100 eV and 200 eV for hydrogen and 200 eV for helium. The use of pseudostates as intermediate states in the study of excitation of hydrogen is also investigated.  相似文献   

20.
Electron impact (EI) mass spectra of a selection of C1-C3 haloalkanes in helium nanodroplets have been recorded to determine if the helium solvent can significantly reduce molecular ion fragmentation. Haloalkanes were chosen for investigation because their EI mass spectra in the gas phase show extensive ion fragmentation. There is no evidence of any major softening effect in large helium droplets ( approximately 60 000 helium atoms), but some branching ratios are altered. In particular, channels requiring C-C bond fission or concerted processes leading to the ejection of hydrogen halide molecules are suppressed by helium solvation. Rapid cooling by the helium is not sufficient to account for all the differences between the helium droplet and gas phase mass spectra. It is also suggested that the formation of a solid "snowball" of helium around the molecular ion introduces a cage effect, which enhances those fragmentation channels that require minimal disruption to the helium cage for products to escape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号