首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with t-butyl radicals (t-C4H9) in the gas phase were investigated using high-resolution laser spectroscopy in a crossed-beam configuration, together with ab initio theoretical calculations. The radical reactants, O(3P) and t-C4H9, were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of the precursor, azo-t-butane, respectively. A new exothermic channel, O(3P)+t-C4H9 --> OH+iso-C4H8, was identified and the nascent rovibrational distributions of the OH (X 2Pi: upsilon" = 0,1,2) products were examined. The population analyses for the two spin-orbit states of F1(2Pi32) and F2(2Pi12) showed that the upsilon" = 0 level is described by a bimodal feature composed of low- and high-N" rotational components, whereas the upsilon" = 1 and 2 levels exhibit unimodal distributions. No noticeable spin-orbit or Lambda-doublet propensities were observed in any vibrational state. The partitioning ratio of the vibrational populations (Pupsilon") with respect to the low-N" components of the upsilon" = 0 level was estimated to be P0:P1:P2 = 1:1.17+/-0.24:1.40+/-0.11, indicating that the nascent internal distributions are highly excited. On the basis of the comparison of the experimental results with the statistical theory, the reaction mechanism at the molecular level can be described in terms of two competing dynamic pathways: the major, direct abstraction process leading to the inversion of the vibrational populations, and the minor, short-lived addition-complex process responsible for the hot rotational distributions. After considering the reaction exothermicity, the barrier height, and the number of intermediates along the addition reaction pathways on the lowest doublet potential energy surface, the formation of CH3COCH3(acetone)+CH3 was predicted to be dominant in the addition mechanism.  相似文献   

2.
Quantum scattering calculations are reported for the O(3P)+H2(v=0,1) reaction using chemically accurate potential energy surfaces of 3A' and 3A" symmetry. We present state-to-state reaction cross sections and rate coefficients as well as thermal rate coefficients for the title reaction using accurate quantum calculations. Our calculations yield reaction cross sections that are in quantitative accord with results of recent crossed molecular beam experiments. Comparisons with results obtained using the J-shifting calculations show that the J-shifting approximation is quite reliable for this system. Thermal rate coefficients from the exact calculations and the J-shifting approximation agree remarkably well with experimental results. Our calculations also reproduce the markedly different OH(v'=0)/OH(v'=1) branching in O(3P)+H2(v=1) reaction, observed in experiments that use different O(3P) atom sources. In particular, we show that the branching ratio is a strong function of the kinetic energy of the O(3P) atom.  相似文献   

3.
The oxidation reaction dynamics of a saturated hydrocarbon radical t-butyl leading to the isobutene +OH (X 2Pi:v"=0, 1, 2) products in the gas phase were first investigated by applying a combination of high-resolution spectroscopy in a crossed-beam configuration and ab initio calculations. By comparing the nascent OH populations with the statistical theory, the reaction mechanism at the molecular level can be described in terms of two competing dynamic pathways: the major direct abstraction process leading to the inversion of vibrational populations, and the minor short-lived addition-complex process for hot rotational distributions.  相似文献   

4.
The dynamics of the radical-radical reaction O((3)P) + CH(3), a prototypical case for the reactions of atomic oxygen with alkyl radicals of great relevance in combustion chemistry, has been investigated by means of the crossed molecular beam technique with mass spectrometric detection at a collision energy of 55.9 kJ mol(-1). The results have been examined in the light of previous kinetic and theoretical work. From product angular and velocity distribution measurements, the dynamics of the predominant H-displacement channel leading to formaldehyde formation has been characterized. This channel has been found to proceed via the formation of an osculating complex; a significant coupling between the product centre-of-mass angular and translational energy distributions has been noted. Experimental attempts to characterize the dynamics of the channel leading to HCO + H(2) have failed and it remains unclear whether HCO is formed by the reaction and/or, if formed, a part of HCO does not dissociate quickly into CO + H.  相似文献   

5.
We present global potential energy surfaces for the three lowest triplet states in O(3P)+H2O(X1A1) collisions and present results of classical dynamics calculations on the O(3P)+H2O(X1A1)-->OH(X2pi)+OH(X2pi) reaction using these surfaces. The surfaces are spline-based fits of approximately 20,000 fixed geometry ab initio calculations at the complete-active-space self-consistent field+second-order perturbation theory (CASSCF+MP2) level with a O(4s3p2d1f)/H(3s2p) one electron basis set. Computed rate constants compare well to measurements in the 1000-2500 K range using these surfaces. We also compute the total, rovibrationally resolved, and differential angular cross sections at fixed collision velocities from near threshold at approximately 4 km s(-1) (16.9 kcal mol(-1) collision energy) to 11 km s(-1) (122.5 kcal mol(-1) collision energy), and we compare these computed cross sections to available space-based and laboratory data. A major finding of the present work is that above approximately 40 kcal mol(-1) collision energy rovibrationally excited OH(X2pi) products are a significant and perhaps dominant contributor to the observed 1-5 micro spectral emission from O(3P)+H2O(X1A1) collisions. Another important result is that OH(X2pi) products are formed in two distinct rovibrational distributions. The "active" OH products are formed with the reagent O atom, and their rovibrational distributions are extremely hot. The remaining "spectator" OH is relatively rovibrationally cold. For the active OH, rotational energy is dominant at all collision velocities, but the opposite holds for the spectator OH. Summed over both OH products, below approximately 50 kcal mol(-1) collision energy, vibration dominates the OH internal energy, and above approximately 50 kcal mol(-1) rotation is greater than vibrational energy. As the collision energy increases, energy is diverted from vibration to mostly translational energy. We note that the present fitted surfaces can also be used to investigate direct collisional excitation of H2O(X1A1) by O(3P) and also OH(X2pi)+OH(X2pi) collisions.  相似文献   

6.
The reaction between energetic nitrogen atoms and oxygen molecules has received important attention in connection with nitric oxide chemistry in the lower thermosphere. We report time-independent quantum mechanical calculations of the N(4S)+O2-->NO+O reaction employing the X 2A' and a 4A' electronic potential energy surfaces of Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. We confirm the production of highly vibrationally excited NO molecules, consistent with previous semiclassical and more recent time-dependent quantum wave packet studies. Calculations are carried out for total angular momentum quantum number J=0 and cross sections and rate coefficients are extracted using the J-shifting approximation. The results are in good agreement with available experimental and theoretical data.  相似文献   

7.
The gas-phase radical-radical reaction dynamics of O(3P) + C3H5 --> H(2S) + C3H4O was studied at an average collision energy of 6.4 kcal/mol in a crossed beam configuration. The ground-state atomic oxygen [O(3P)] and allyl radicals (C3H5) were generated by the photolysis of NO2 and the supersonic flash pyrolysis of allyl iodide, respectively. Nascent hydrogen atom products were probed by the vacuum-ultraviolet-laser induced fluorescence spectroscopy in the Lyman-alpha region centered at 121.6 nm. With the aid of the CBS-QB3 level of ab initio theory, it has been found that the barrierless addition of O(3P) to C3H5 forms the energy-rich addition complexes on the lowest doublet potential energy surface, which are predicted to undergo a subsequent direct decomposition step leading to the reaction products H + C3H4O. The major counterpart C3H4O of the probed hydrogen atom is calculated to be acrolein after taking into account the factors of barrier height, reaction enthalpy, and the number of intermediates involved along the reaction pathway. The nascent H-atom Doppler profile analysis shows that the average center-of-mass translational energy of the H + C3H4O products and the fraction of the total available energy released as the translational energy were determined to be 3.83 kcal/mol and 0.054, respectively. On the basis of comparison with statistical calculations, the reaction proceeds through the formation of short-lived addition complexes rather than statistical, long-lived intermediates, and the polyatomic acrolein product is significantly internally excited at the moment of the decomposition.  相似文献   

8.
We present ab initio calculations of the reaction of ground-state atomic oxygen [O((3)P)] with a propargyl (C(3)H(3)) radical based on the application of the density-functional method and the complete basis-set model. It has been predicted that the barrierless addition of O((3)P) to C(3)H(3) on the lowest doublet potential-energy surface produces several energy-rich intermediates, which undergo subsequent isomerization and decomposition steps to generate various exothermic reaction products: C(2)H(3)+CO, C(3)H(2)O+H, C(3)H(2)+OH, C(2)H(2)+CHO, C(2)H(2)O+CH, C(2)HO+CH(2), and CH(2)O+C(2)H. The respective reaction pathways are examined extensively with the aid of statistical Rice-Ramsperger-Kassel-Marcus calculations, suggesting that the primary reaction channel is the formation of propynal (CHCCHO)+H. For the minor C(3)H(2)+OH channel, which has been reported in recent gas-phase crossed-beam experiments [H. Lee et al., J. Chem. Phys. 119, 9337 (2003); 120, 2215 (2004)], a comparison on the basis of prior statistical calculations is made with the nascent rotational state distributions of the OH products to elucidate the mechanistic and dynamic characteristics at the molecular level.  相似文献   

9.
1994年,苏梅克9号彗星撞击木星引起了木星大气成分的变化,研究发现撞击后木星大气中含有大量的含硫含碳的小分子和小自由基.因缺乏与这些物质相关的中间体的实验数据,研究它们的来源的工作难以进行.1998年,李远哲等[1]用交叉分子束实验研究了基态碳原子C(3P)与H2S的反应,得到主要产物HCS.他们对反应所经历的中间体作了推测,并用从头计算方法计算了反应物、中间体和产物的能量,但对反应所经历的(反应物与中间体、中间体与中间体、中间体与产物之间的)过渡态没有进行探讨.众所周知,过渡态位垒的高低对是否能实现设定的反应是至关重要的…  相似文献   

10.
The authors report a global potential energy surface for the ground electronic state of HO(2)(X (2)A(")), which improves upon the XXZLG potential [Xu and et al., J. Chem. Phys. 122, 244305 (2005)] with additional high-level ab initio points for the long-range interaction potential in the O+OH channel. Exact J=0 quantum mechanical reaction probabilities were calculated on the new potential and the rate constant for the title reaction was obtained using a J-shifting method. The calculated rate constant is in good agreement with available experimental values and our results predict a significantly lower rate at temperature range below 30 K, offering a possible explanation for the "interstellar oxygen problem."  相似文献   

11.
The excitation function for the reaction, O(3P)+CH4-->H+OCH3, has been measured in a crossed molecular beams experiment and determined with direct dynamics calculations that use the quasiclassical trajectory method in conjunction with a recently developed semiempirical Hamiltonian. Good agreement is found between experiment and theory, enabling us to address two fundamental issues for the O(3P)+CH4 reaction that arise for all O(3P)+saturated hydrocarbon reactions: (1) the importance of triplet excited states that correlate adiabatically to ground-state reactants and products and (2) the importance of intersystem crossing processes involving the lowest singlet surface [corresponding to reaction with O(1D)]. Our results indicate that the first excited triplet surface contributes substantially to the cross section when the collision energy exceeds the reaction barrier (approximately 2 eV) by more than 0.5 eV. Although triplet-singlet crossings may occur at all energies, we have found that their effect on the excitation function is negligible for the collision energies studied-up to 1.5 eV above threshold.  相似文献   

12.
The effect of nonadiabatic transitions through the spin-orbit couplings has been investigated on the fast neutral reaction, O((3)P)+CH(3)-->CH(3)O. Adiabatic potential energies and the spin-orbit coupling terms have been evaluated for the four electronic states of CH(3)O ((2)E, (2)A(2), (4)E, and (4)A(2)) that correlate with the O((3)P)+CH(3) asymptote, as a function of CO distance and OCH angle under the C(3v) symmetry, by ab initio electronic structure calculations using multireference internally contracted single and double excitation configuration interaction method with the 6-311G(2df,2pd) basis sets. Multistate quantum reactive scattering calculations have been carried out with the use of thus obtained potential energies and spin-orbit coupling matrices, based on the generalized R-matrix propagation method. The calculated thermal rate constants show a slight positive dependence on temperature in a range between 50 and 2000 K, supporting the previous experimental results. It is shown that the spin-orbit coupled excited states give rise to reflections over the centrifugal barrier due to the quantum interference. Classical capture calculations yield larger rate constants due to the neglect of quantum reflections. It is concluded that the effect of nonadiabatic transitions is of minor importance on the overall reactivity in this reaction.  相似文献   

13.
The kinetics of the reaction between O atoms and OH radicals, both in their electronic ground state, have been investigated at temperatures down to ca. 39 K. The experiments employed a CRESU (Cinétique deRéaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. Both reagents were created using pulsed laser photolysis at 157.6 nm of mixtures containing H2O and O2 diluted in N2 carrier gas. OH radicals were formed by both direct photolysis of H2O and the reaction between O(1D) atoms and H2O. O(3P) atoms were formed both as a direct product of O2 photolysis and by the rapid quenching of O(1D) atoms formed in that photolysis by N2 and O2. The rates of removal of OH radicals were observed by laser-induced fluorescence, and concentrations of O atoms were estimated from a knowledge of the absorption cross-section for O2 at 157.6 nm and of the measured fluence from the F2 laser at this wavelength. To obtain a best estimate of the rate constants for the O + OH reaction, we had to correct the raw experimental data for the following: (a) the decrease in the laser fluence along the jet due to the absorption by O2 in the gas mixture, (b) the increase in temperature, and consequent decrease in gas density, as a result of energy released in the photochemical and chemical processes that occurred, and (c) the formation of OH(v = 0) as a result of relaxation, particularly by O2, of OH radicals formed in levels v > 0. Once these corrections were made, the rate constant for reaction between OH and O(3P) atoms showed little variation in the temperature range of 142 to 39 K and had a value of (3.5 +/- 1.0) x 10(-11) cm3 molecule(-1) s(-1). It is recommended that this value is used in future chemical models of dense interstellar clouds.  相似文献   

14.
We present Coriolis coupling effects on the initial-state-resolved dynamics of the insertion reaction N((2)D)+H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-) and a (1)Delta)+H((2)S), without and with nonadiabatic Renner-Teller (RT) interactions between the NH(2) X (2)B(1) and A (2)A(1) electronic states. We report coupled-channel (CC) Hamiltonian matrix elements, which take into account both Coriolis and RT couplings, use the real wave-packet and flux methods for calculating initial-state-resolved reaction probabilities, and contrast CC with centrifugal-sudden (CS) results. Without RT interactions, Coriolis effects are rather small up to J=40, and the CS approximation can be safely employed for calculating initial-state-resolved, integral cross sections. On the other hand, RT effects are associated with rather large Coriolis couplings, mainly near the linearity of NH(2), and the accuracy of the CS approximation thus breaks down at high collision energies, when the reaction starts on the excited A (2)A(1) surface. We also present the CC-RT distribution of the X (3)Sigma(-) and a (1)Delta electronic states of the NH products.  相似文献   

15.
We have used oxygen Rydberg time-of-flight spectroscopy to carry out a crossed molecular beam study of the CN + O2 reaction at collision energies of 3.1 and 4.1 kcal/mol. The O(3P2) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. The translational energy distributions were broad, indicating that the NCO is formed with a wide range of internal excitation, and the angular distribution was forward-backward symmetric, indicating the participation of NCOO intermediates with lifetimes comparable to or longer than their rotational periods. Rice-Ramsperger-Kassel-Marcus modeling of the dissociation of NCOO to NCO + O suggests that Do(NC-OO) > or = 38 kcal/mol, which is consistent with several theoretical calculations. Implications for the competing CO + NO channel are discussed.  相似文献   

16.
The initial state selected time-dependent wave packet calculations have been carried out to study the title reaction with seven degrees of freedom included by restricting the nonreacting CH(3) group under C(3V) symmetry and the CH bond length in the group. Total reaction probabilities as well as integral cross sections were calculated for the ground and four vibrationally excited reagent states. Our calculation shows that the reactivity is very small for the reaction for collision energy up to 1.0 eV for all the initial states. Initial vibration excitation of CH(4), in particular, the CH stretch excitation, enhances the reactivity, but only part of the excitation energy deposited can be used to reduce the reaction threshold. The rate constant for the ground initial state agrees rather well with that from a recent quasiclassical trajectory study and is larger than that from the semirigid vibrating rotor target calculations, in particular, in the low temperature region. On the other hand, the thermal rate constant calculated from the integral cross sections for these five vibrational states is about a factor of 20 smaller than that from the multiconfiguration time-dependent Hartree study.  相似文献   

17.
A quasiclassical trajectory study with the sixth-order explicit symplectic algorithm of the N(4S)+O2(X 3Sigmag-)-->NO(X 2Pi)+O(3P) atmospheric reaction has been performed by employing the new 2A' and 4A' potential-energy surfaces reported by Sayos et al. [J. Chem. Phys. 117, 670 (2002)]. For the translational temperature considered up to 10,000 K, the larger relative translational energy and the higher rovibrational levels of O2 molecule with respect to the previous works have been taken into account, and a clearer database about the character of the total reaction cross section has been presented in this work. The dependence of microscopic rate constants on the vibrational level of O2 molecule at T=3000, 5000, and 10,000 K has been exhibited, and we can see that the values of log10 k(T,v,J) vary almost linearly with the vibrational level of O2 molecule. The thermal rate constants at the translational temperature between 300 and 10,000 K have been evaluated and compared with the experimental and previous theoretical results. It is found that the thermal rate constants determined in this work have a better agreement with the experimental data and can provide a more valid theoretical reference at the translational temperature considered for the title reaction.  相似文献   

18.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with propargyl radicals (C3H3) has first been investigated in a crossed beam configuration. The radical reactants O(3P) and C3H3 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor propargyl bromide, respectively. A new exothermic channel of O(3P) + C3H3 --> C3H2 + OH was identified and the nascent distributions of the product OH in the ground vibrational state (X 2Pi:nu" = 0) showed bimodal rotational excitations composed of the low- and high-N" components without spin-orbit propensities. The averaged ratios of Pi(A')/Pi(A") were determined to be 0.60 +/- 0.28. With the aid of ab initio theory it is predicted that on the lowest doublet potential energy surface, the reaction proceeds via the addition complexes formed through the barrierless addition of O(3P) to C3H3. The common direct abstraction pathway through a collinear geometry does not occur due to the high entrance barrier in our low collision energy regime. In addition, the major reaction channel is calculated to be the formation of propynal (CHCCHO) + H, and the counterpart C3H2 of the probed OH product in the title reaction is cyclopropenylidene (1c-C3H2) after considering the factors of barrier height, reaction enthalpy and structural features of the intermediates formed along the reaction coordinate. On the basis of the statistical prior and rotational surprisal analyses, the ratio of population partitioning for the low- and high-N" is found to be about 1:2, and the reaction is described in terms of two competing addition-complex mechanisms: a major short-lived dynamic complex and a minor long-lived statistical complex. The observed unusual reaction mechanism stands in sharp contrast with the reaction of O(3P) with allyl radical (C3H5), a second significant conjugated hydrocarbon radical, which shows totally dynamic processes [J. Chem. Phys. 117, 2017 (2002)], and should be understood based upon the characteristic electronic structures and reactivity of the intermediates on the potential energy surface.  相似文献   

19.
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.  相似文献   

20.
A mixed quantum-classical method for calculating product energy partitioning based on a reaction path Hamiltonian is presented and applied to HF elimination from fluoroethane. The goal is to describe the effect of the potential energy release on the product energies using a simple model of quantized transverse vibrational modes coupled to a classical reaction path via the path curvature. Calculations of the minimum energy path were done at the B3LYP/6-311++G(2d,2p) and MP2/6-311++G** levels of theory, followed by energy-partitioning dynamics calculations. The results for the final HF vibrational state distribution were found to be in good qualitative agreement with both experimental studies and quasiclassical trajectory simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号