首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Geometric and conformational changes of zwitter‐type ionic liquids (ZILs) due to hydrogen‐bonding interactions with water molecules are investigated by density functional theory (DFT), two‐dimensional IR correlation spectroscopy (2D IR COS), and pulsed‐gradient spin‐echo NMR (PGSE NMR). Simulation results indicate that molecular structures in the optimized states are strongly influenced by hydrogen bonding of water molecules with the sulfonate group or imidazolium and pyrrolidinium rings of 3‐(1‐methyl‐3‐imidazolio)propanesulfonate ( 1 ) and 3‐(1‐methyl‐1‐pyrrolidinio)propanesulfonate ( 2 ), respectively. Concentration‐dependent 2D IR COS reveals kinetic conformational changes of the two ZIL–H2O systems attributable to intermolecular interactions, as well as the interactions of sulfonate groups and imidazolium or pyrrolidinium rings with water molecules. The dramatic changes in the 1H self‐diffusion coefficients elucidate the formation of proton‐conduction pathways consisting of ZIL networks. In ZIL domains, protons are transferred by a Grotthuss‐type mechanism through formation, breaking, and restructuring of bonds between ZILs and H2O, leading to an energetically favorable state. The simulation and experimental investigations delineated herein provide a perspective to understanding the interactions with water from an academic point of view as well as to designing ILs with desired properties from the viewpoint of applications.  相似文献   

2.
We present a combined x-ray absorption spectroscopy/computational study of water in hydrochloric acid (HCl) solutions of varying concentration to address the structure and bonding of excess protons and their effect on the hydrogen bonding network in liquid water. Intensity variations and energy shifts indicate changes in the hydrogen bonding structure in water as well as the local structure of the protonated complex as a function of the concentration of protons. In particular, in highly acidic solutions we find a dominance of the Eigen form, H(3)O(+), while the proton is less localized to a specific water under less acidic conditions.  相似文献   

3.
从计算模拟及实验角度系统总结了聚合物结构、 聚合物构象、 聚合物扩散及聚合物多尺度动力学的研究进展, 阐述了各影响因素及其变化规律, 并对聚合物动力学的未来研究进行了展望.  相似文献   

4.
We have modeled structures and energetics of anhydrous proton-conducting wires: tethered hydrogen-bonded chains of the form ···HX···HX···HX···, with functional groups HX = imidazole, triazole, and formamidine; formic, sulfonic, and phosphonic acids. We have applied density functional theory (DFT) to model proton wires up to 19 units long, where each proton carrier is linked to an effective backbone to mimic polymer tethering. This approach allows the direct calculation of hydrogen bond strengths. The proton wires were found to be stabilized by strong hydrogen bonds (up to 50 kJ/mol) whose strength correlates with the proton affinity of HX [related to pK(b)(HX)] and not to pK(a)(HX) as is often assumed. Geometry optimizations and ab initio molecular dynamics near 400 K on imidazole-based proton wires both predict that adding a proton to the end of such wires causes the excess charge to embed into the interior segments of these wires. Proton translocation energy landscapes for imidazole-based wires are sensitive to the imidazole attachment point (head or feet) and to wire architecture (linear or interdigitated). Linear imidazole wires with head-attachment exhibit low barriers for intrawire proton motion, rivaling proton diffusion in liquid imidazole. Excess charge relaxation from the edge of wires is found to be dominated by long-range Grotthuss shuttling for distances as long as 42 ?, especially for interdigitated wires. For imidazole, we predict that proton translocation is controlled by the energetics of desorption from the proton wire, even for relatively long wires (600 imidazole units). Proton desorption energies show no correlation with functional group properties, suggesting that proton desorption is a collective process in proton wires.  相似文献   

5.
A detailed theoretical investigation of the charge transport mechanism in poly(4-vinyl-imidazole) (P4VI), the parent polymer of a series of N-heterocyclic-based membranes used as an electrolyte in proton exchange membrane fuel cells, is presented. In particular, Density Functional Theory (DFT) results obtained for small model systems (protonated imidazole dimers and trimers) suggest that the commonly accepted conduction mechanism, based on a sequential proton transfer between imidazole moieties, could be impeded by the geometrical constraints imposed by the polymeric backbone. Indeed only one kind of proton transfer reaction is energetically allowed between adjacent imidazoles, so that a rotation of the protonated imidazole is required for a second proton transfer. Molecular dynamics simulations on a larger model (15 oligomers with an excess proton) show that the rotation of the imidazole carrying the excess proton is a soft large amplitude motion. These results allow us to propose a new proton conduction mechanism in P4VI, where a frustrated rotation of the protonated imidazole before each proton transfer reaction represents the rate-limiting step. Furthermore, in contrast with the Grotthuss proton transport mechanism in water, our results indicate that here it is the same proton which could be successively transferred. From a chemical point of view, these new insights into the mechanism are relevant for a rational design of modified azole-based systems for Proton Exchange Membrane Fuel Cells.  相似文献   

6.
A relationship between intramolecular hydrogen bonding and the cis-trans isomerization of a proline imide bond for proline-containing short peptides were studied by proton NMR and infrared spectroscopy using DMSO-d6/CDCl3 mixed solvents. The percentage of the trans form increases with increasing fraction of CDCl3 in the mixed solvents except for compounds without possibility of intramolecular hydrogen bonding. Chemical shift variations of amide protons with solvent mixing ratios were found to be useful for judging whether the amide protons take part in the intramolecular hydrogen bonding to a considerable degree or not. These results and infrared spectra were used to specify intramolecularly hydrogen bonded structures of the peptides. Formation of the 10-membered or 13-membered hydrogen bonded ring which includes the carbonyl group precedent to the prolyl residue facilitates the cis-to-trans isomerization and these hydrogen bonded rings are strong enough to restrict the proline imide bond to the trans form in CDCl3 solution. On the other hand, a 7-membered hydrogen bonded ring is not so effective in restricting the proline imide bond.  相似文献   

7.
The 13C NMR spectra of phloropyron BB, desaspidin BB, albaspidin BB and margaspidin BB were recorded and the structures of the compounds investigated with the aid of chemical shifts and CH coupling constants. The filicinic acid ring of the first three compounds appeared to have a monoketonic structure with the carbonyl group in position 2 (acyl group in position 3). The pyronone ring of phloropyron BB also has a monoketonic structure, with the carbonyl function adjacent to the ring oxygen. The two rings of the first three compounds attain a conformation where a stabilizing hydrogen bond(s) is (are) formed between the two rings, as shown by the observed CH couplings to some of the hydroxyl protons. The spectrum of margaspidin BB, whichconsists of two aromatic acyl phloroglucinol rings, indicates less inter-ring hydrogen bonding interactions.  相似文献   

8.
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1H-1H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.  相似文献   

9.
The electron and proton transfer in phenol‐imidazole‐base systems (base = NH2? or OH?) were investigated by density‐functional theory calculations. In particular, the role of bridge imidazole on the electron and proton transfer was discussed in comparison with the phenol‐base systems (base = imidazole, H2O, NH3, OH?, and NH2?). In the gas phase phenol‐imidazole‐base system, the hydrogen bonding between the phenol and the imidazole is classified as short strong hydrogen bonding, whereas that between the imidazole and the base is a conventional hydrogen bonding. The n value in spn hybridization of the oxygen and carbon atoms of the phenolic CO sigma bond was found to be closely related to the CO bond length. From the potential energy surfaces without and with zero point energy correction, it can be concluded that the separated electron and proton transfer mechanism is suitable for the gas‐phase phenol‐imidazole‐base triads, in which the low‐barrier hydrogen bond is found and the delocalized phenolic proton can move freely in the single‐well potential. For the gas‐phase oxidized systems and all of the triads in water solvent, the homogeneous proton‐coupled electron transfer mechanism prevails. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
用配体2?(4?吡啶基)?咪唑(4?PIM)和2?(4?(1?咪唑基)?苯基)?咪唑(IPI)分别与AgClO4和ZnCl2反应得到了配合物[Ag(4?PIM)]ClO4(1)和[Zn(IPI)]Cl2·H2O(2)。晶体结构分析表明配合物1与2分别具有M4L4和M2L2金属有机大环结构,且金属有机大环分子结构中存在较强的分子间作用力、芳环之间π?π作用和氢键作用。刚性配体IPI分别与AgNO3和Zn(NO3)2在甲醇、乙醇、二甲基亚砜、乙二醇、四氢呋喃、乙腈等有机溶剂中均能形成超分子凝胶;在乙醇溶剂中IPI与AgNO3、AgClO4、AgBF4、AgPF6、Ag(OSO2CF3)、Zn(NO3)2、Zn(BF4)2、Zn(ClO4)2、Co(NO3)2分别作用也能形成金属有机凝胶。配体IPI分子中咪唑环的1号位的N原子连接H原子,能分别与水分子或者溶剂分子之间形成氢键,可能是“锁”住溶剂分子形成凝胶的关键因素。扫描电镜图片显示配体IPI与AgNO3等银盐和Zn(NO3)2等锌盐在不同溶剂中能分别形成蓬松棉花状结构和疏松似面包状结构的金属有机超分子凝胶。  相似文献   

11.
It was recently suggested that liquid water primarily comprises hydrogen-bonded rings and chains, as opposed to the traditionally accepted locally tetrahedral structure (Wernet et al. Science 2004, 304, 995). This controversial conclusion was primarily based on comparison between experimental and calculated X-ray absorption spectra (XAS) using computer-generated ice-like 11-molecule clusters. Here we present calculations which conclusively show that when hydrogen-bonding configurations are chosen randomly, the calculated XAS does not reproduce the experimental XAS regardless of the bonding model employed (i.e., rings and chains vs tetrahedral). Furthermore, we also present an analysis of a recently introduced asymmetric water potential (Soper, A. K. J. Phys.: Condens. Matter 2005, 17, S3273), which is representative of the rings and chains structure, and make comparisons with the standard SPC/E potential, which represents the locally tetrahedral structure. We find that the calculated XAS from both potentials is inconsistent with the experimental XAS. However, we also show the calculated electric field distribution from the rings and chains structure is strongly bimodal and highly inconsistent with the experimental Raman spectrum, thus casting serious doubt on the validity of the rings and chains model for liquid water.  相似文献   

12.
The proton affinities of imidazole, oxazole, and thiazole rings, relevant to the binding of lexitropsins that contain these rings to the minor groove of DNA, are calculated using ab initio (Hartree–Fock) calculations. It is found that the proton affinities decrease in the order imidazole, oxazole, thiazole and that a methyl group substituent increases the proton affinity of imidazole, while a peptidic group decreases it.  相似文献   

13.
The characterization of a new five-coordinate derivative of (2-methylimidazole)(tetraphenylporphinato)iron(II) provides new and unique information about the effects of forming a hydrogen bond to the coordinated imidazole on the geometric and electronic structure of iron in these species. The complex studied has two crystallographically distinct iron sites; one site has an axial imidazole ligand modified by an external hydrogen bond, and the other site has an axial imidazole ligand with no external interactions. The iron atoms at the two sites have distinct geometric features, as revealed in their molecular structures, and distinct electronic structures, as shown by M?ssbauer spectroscopy, although both are high spin (S = 2). The molecule with the external hydrogen bond has longer equatorial Fe-N(p) bonds, a larger displacement of the iron atom out of the porphyrin plane, and a shorter axial bond compared to its counterpart with no hydrogen bonding. The M?ssbauer features are distinct for the two sites, with differing quadrupole splitting and isomer shift values and probably differing signs for the quadrupole splitting as shown by variable-temperature measurements in applied magnetic field. These features are consistent with a significant change in the nature of the doubly populated d orbital and are all in the direction of the dichotomy displayed by related imidazole and imidazolate species where deprotonation leads to major differences. The results points out the possible effects of strong hydrogen bonding in heme proteins.  相似文献   

14.
We investigated crystal structure relationships, phase stability and chemical bonding of the thermoelectric materials ZnSb, alpha-Zn4Sb3, and beta-Zn4Sb3 by means of first principles calculations. The structures of these materials are difficult to rationalise. This is especially true for beta-Zn4Sb3 because of the presence of vacancies and interstitial atoms. We recognised rhomboid rings Zn2Sb2 as central structural building units present in all materials. Importantly, these rings enable to establish a clear relationship between disordered beta-Zn4Sb3 and ordered low-temperature alpha-Zn4Sb3. Concerning the phase stability of Zn4Sb3 we identified a peculiar situation: alpha-Zn4Sb3 is metastable and beta-Zn4Sb3 can only be thermodynamically stable when its structural disorder accounts for a large entropy contribution to free energy. According to their electronic structure zinc antimonides represent heteroatomic framework structures with a modest polarity. The peculiar electronic structure of Zn/Sb systems can also be modelled by Al/Si systems. The high coordination numbers in the frameworks implies the presence of multicentre bonding. We developed a simple bonding picture for these frameworks where multicentre bonding is confined to rhomboid rings Zn2Sb2.  相似文献   

15.
We present three theoretical models of various degree of completeness to explore the chemical phase space available to the Glu4His2Zn2 cofactor found in the four-helix bundle of de novo designed metalloprotein Duo Ferro 1. We have found that the planewave DFT geometry optimization of 94-atom Model I, which contains both the protein scaffold constraints as well as the second shell hydrogen bonding network, reproduces the crystal structure bonding with remarkable accuracy (0.34 A). Surprisingly, the geometry optimization of 66-atom Model II (lacking the second shell hydrogen bonding) and 48-atom Model III (being also free of the protein scaffold constraints) still result in the fidelity with the crystallographic structure (RMSDs 0.29 and 0.34 A, respectively). To examine whether these structures are close to the global minimum as well as to investigate various conformational transitions to which the di-Zn cofactor may be susceptible to, we have carried out a 10 ps Car-Parrinello Molecular Dynamics (CPMD) simulation of Model III. We suggest that weak hydrogen bonds between imidazole hydrogens and carboxylate oxygens modulate the dynamical behavior of the system. One part of the molecule was found to be rigid due to the particular H(imidazole)-O(carboxylate) interaction restricting both the motion of the imidazole ring as well as the terminal carboxylate conformational mobility. The second half of the system was very flexible demonstrating a coupling of a transient formation of H(imidazole)-O(carboxylate) bonds with the spinning of the imidazole ring and syn-anti isomerization of the terminal carboxylate group. In addition, two low-energy snapshots from the 10 ps CPMD run were quenched, and their geometries were optimized, leading to two new isomers 48 kJ/mol lower in energy than the one associated with the crystal structure. We suggest that periodic quenching of the CPMD simulation snapshots of a minimalist model may be used as an efficient method to generate a large number of competitive local minima, which may be consequently pruned by imposing the protein scaffold constraints as well as further tuned by the second shell hydrogen bonding network.  相似文献   

16.
Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.  相似文献   

17.
Gas-phase proton-transfer pathways in protonated histidylglycine   总被引:1,自引:0,他引:1  
Pathways for proton transfer in the histidylglycine cation are examined in the gas-phase environment with the goal of understanding the mechanism by which protons may become mobile in proteins with basic amino acid residues. An extensive search of the potential energy surface is performed using density functional theory (DFT) methods. After corrections for zero-point energy are included, it is found that all the lowest energy barriers for proton transfer between the N-terminus and the imidazole ring have heights of only a few kcal/mol, while those between the imidazole ring and the backbone amide oxygen have heights of approximately 15 kcal/mol when the proton is moving from the ring to the backbone and only a few kcal/mol when moving from the backbone to the imidazole ring. In mass spectrometric techniques employing collision-induced dissociation to dissociate protein complex ions or to fragment peptides, these barriers can be overcome, and the protons mobilized. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract —Two strains of archaebacteria have been found to contain light-driven proton pumping pigments analogous to bacteriorhodopsin (bR) in Halobacterium salinarium . These proteins are called archaerhodopsin-1 (aR-1) and archaerhodopsin-2 (aR-2). Their high degree of sequence identity with bR within the putative proton channel enables us to draw some conclusions about the roles of regions where differences in amino acids exist, and in particular the surface residues, on the structure and function of retinal-based proton pumps. We have characterized the spectral and photochemical properties of these two proteins and compared them to the corresponding properties of bR. While there are some differences in absorbance maxima and kinetics of the photocycle, most of the properties of aR-1 and aR-2 are similar to those of bR. The most striking differences of these proteins with bR are the lack of an alkaline-induced red-shifted absorption species and a dramatic (apparent) decrease in the light-induced transient proton release. In membrane sheet suspensions of aR-1 at 0.15 M KCI, the order of proton release and uptake appears opposite that of bR, in which proton release precedes uptake. The nature of this behavior appears to be due to differences in the amino acid sequence at the surfaces of the proteins. In particular, the residue corresponding to the lysine at position 129 of the extracellular loop region of bR is a histidine in aR-1 and could regulate the efficient release of protons into solution in bR.  相似文献   

19.
A mechanism for proton pumping by the B-type cytochrome c oxidases is presented in which one proton is pumped in conjunction with the weakly exergonic, two-electron reduction of Fe-bound O 2 to the Fe-Cu bridging peroxodianion and three protons are pumped in conjunction with the highly exergonic, two-electron reduction of Fe(III)- (-)O-O (-)-Cu(II) to form water and the active oxidized enzyme, Fe(III)- (-)OH,Cu(II). The scheme is based on the active-site structure of cytochrome ba 3 from Thermus thermophilus, which is considered to be both necessary and sufficient for coupled O 2 reduction and proton pumping when appropriate gates are in place (not included in the model). Fourteen detailed structures obtained from density functional theory (DFT) geometry optimization are presented that are reasonably thought to occur during the four-electron reduction of O 2. Each proton-pumping step takes place when a proton resides on the imidazole ring of I-His376 and the large active-site cluster has a net charge of +1 due to an uncompensated, positive charge formally associated with Cu B. Four types of DFT were applied to determine the energy of each intermediate, and standard thermochemical approaches were used to obtain the reaction free energies for each step in the catalytic cycle. This application of DFT generally conforms with previously suggested criteria for a valid model (Siegbahn, P. E. M.; Blomberg, M. A. R. Chem. Rev. 2000, 100, 421-437) and shows how the chemistry of O 2 reduction in the heme a 3 -Cu B dinuclear center can be harnessed to generate an electrochemical proton gradient across the lipid bilayer.  相似文献   

20.
Abstract— Bacteriorhodopsin pumps protons from the cytoplasm to the outside of halobacteria, Halobacterium salinarium , by using absorbed light energy. The newly observed density map at 3 Å resolution clarified nearly the entire structure; the resolution in the direction perpendicular to the membrane surface is 3.2 Å. The new structure clearly indicates the proton transfer pathway in bacteriorhodopsin. In particular, the location of key aspartic acid and glutamic acid residues in the derived structural model suggested funneling structures with different designs for input and output of protons on the cytoplasmic and extracellular sides, respectively, of the protein. This paper describes the major differences between the model based on the new observation and the former model obtained through crystallographic refinement by Grigorieff et al . ( J. Mol. Biol 259; 393-421, 1996).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号