首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
We describe the effect of growth temperature and OHH(2)O composition on the wetting behavior of Pt(111). Changes to the desorption rate of ice films were measured and correlated to the film morphology using low energy electron diffraction and thermal desorption of chloroform to measure the area of multilayer ice and monolayer OHH(2)O exposed. Thin ice films roughen, forming bare (radical39 x radical39)R16 degrees water monolayer and ice clusters. The size of the clusters depends on growth temperature and determines their kinetic stability, with the desorption rate decreasing when larger clusters are formed by growth at high temperature. Continuous films of more than approximately 50 layers thick stabilize an ordered incommensurate ice film that does not dewet. OH coadsorption pins the first layer into registry with Pt, forming an ordered hexagonal (OH+H(2)O) structure with all the H atoms involved in hydrogen bonding. Although this layer has a similar honeycomb OH(x) skeleton to ice Ih, it is unable to reconstruct to match the bulk ice lattice parameter and does not form a stable wetting layer. Water aggregates to expose bare monolayer (OH+H(2)O), forming bulk ice crystallites whose size depend on preparation temperature. Increasing the proportion of water in the first layer provides free OH groups which stabilize the multilayer. The factors influencing multilayer wetting are discussed using density functional theory calculations to compare water adsorption on top of (OH+H(2)O) and on simple models for commensurate water structures. We show that both the (OH+H(2)O) structure and "H-down" water layers are poor proton acceptors, bonding to the first layer being enhanced by the presence of free OH groups. Formation of an ordered ice multilayer requires a water-metal interaction sufficient to wet the surface, but not so strong as to prevent the first layer relaxing to stabilize the interface between the metal and bulk ice.  相似文献   

2.
Despite considerable attention in the literature being given to the desorption behaviour of smaller volatiles, the thermal properties of complex organics, such as ethanol (C(2)H(5)OH), which are predicted to be formed within interstellar ices, have yet to be characterized. With this in mind, reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to probe the adsorption and desorption of C(2)H(5)OH deposited on top of water (H(2)O) films of various thicknesses grown on highly oriented pyrolytic graphite (HOPG) at 98 K. Unlike many other molecules detected within interstellar ices, C(2)H(5)OH has a comparable sublimation temperature to H(2)O and therefore gives rise to a complicated desorption profile. RAIRS and TPD show that C(2)H(5)OH is incorporated into the underlying ASW film during heating, due to a morphology change in both the C(2)H(5)OH and H(2)O ices. Desorption peaks assigned to C(2)H(5)OH co-desorption with amorphous, crystalline (CI) and hexagonal H(2)O-ice phases, in addition to C(2)H(5)OH multilayer desorption are observed in the TPD. When C(2)H(5)OH is deposited beneath ASW films, or is co-deposited as a mixture with H(2)O, complete co-desorption is observed, providing further evidence of thermally induced mixing between the ices. C(2)H(5)OH is also shown to modify the desorption of H(2)O at the ASW-CI phase transition. This behaviour has not been previously reported for more commonly studied volatiles found within astrophysical ices. These results are consistent with astronomical observations, which suggest that gas-phase C(2)H(5)OH is localized in hotter regions of the ISM, such as hot cores.  相似文献   

3.
The adsorption, desorption, and clustering behavior of H2O on Pt111 has been investigated by specular He scattering. The data show that water adsorbed on a clean Pt111 surface undergoes a structural transition from a random distribution to clustered islands near 60 K. The initial helium scattering cross sections as a function of temperature are found to be insensitive to the incident H2O flux over a range of 0.005 monolayers (ML)/s-0.55 ML/s indicating that the clustering process is more complex than simple surface diffusion. The coarsening process of an initially random distribution of water deposited at 25 K is found to occur over a broad temperature range, 60相似文献   

4.
Molecular dynamics (MD) calculations have been performed to study the ultraviolet (UV) photodissociation of D(2)O in an amorphous D(2)O ice surface at 10, 20, 60, and 90 K, in order to investigate the influence of isotope effects on the photodesorption processes. As for H(2)O, the main processes after UV photodissociation are trapping and desorption of either fragments or D(2)O molecules. Trapping mainly takes place in the deeper monolayers of the ice, whereas desorption occurs in the uppermost layers. There are three desorption processes: D atom, OD radical, and D(2)O molecule photodesorption. D(2)O desorption takes places either by direct desorption of a recombined D(2)O molecule, or when an energetic D atom produced by photodissociation kicks a surrounding D(2)O molecule out of the surface by transferring part of its momentum. Desorption probabilities are calculated for photoexcitation of D(2)O in the top four monolayers and are compared quantitatively with those for H(2)O obtained from previous MD simulations of UV photodissociation of amorphous water ice at different ice temperatures [Arasa et al., J. Chem. Phys. 132, 184510 (2010)]. The main conclusions are the same, but the average D atom photodesorption probability is smaller than that of the H atom (by about a factor of 0.9) because D has lower kinetic energy than H, whereas the average OD radical photodesorption probability is larger than that of OH (by about a factor of 2.5-2.9 depending on ice temperature) because OD has higher translational energy than OH for every ice temperature studied. The average D(2)O photodesorption probability is larger than that of H(2)O (by about a factor of 1.4-2.3 depending on ice temperature), and this is entirely due to a larger contribution of the D(2)O kick-out mechanism. This is an isotope effect: the kick-out mechanism is more efficient for D(2)O ice, because the D atom formed after D(2)O photodissociation has a larger momentum than photogenerated H atoms from H(2)O, and D transfers momentum more easily to D(2)O than H to H(2)O. The total (OD + D(2)O) yield has been compared with experiments and the total (OH + H(2)O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D(2)O ice than when we compare with calculated yields for H(2)O ice.  相似文献   

5.
We have investigated the photocatalysis of partially deuterated methanol (CD(3)OH) and H(2)O on TiO(2)(110) at 400 nm using a newly developed photocatalysis apparatus in combination with theoretical calculations. Photocatalyzed products, CD(2)O on Ti(5c) sites, and H and D atoms on bridge-bonded oxygen (BBO) sites from CD(3)OH have been clearly detected, while no evidence of H(2)O photocatalysis was found. The experimental results show that dissociation of CD(3)OH on TiO(2)(110) occurs in a stepwise manner in which the O-H dissociation proceeds first and is then followed by C-D dissociation. Theoretical calculations indicate that the high reverse barrier to C-D recombination and the facile desorption of CD(2)O make photocatalytic methanol dissociation on TiO(2)(110) proceed efficiently. Theoretical results also reveal that the reverse reactions, i.e, O-H recombination after H(2)O photocatalytic dissociation on TiO(2)(110), may occur easily, thus inhibiting efficient photocatalytic water splitting.  相似文献   

6.
Hydroxyl (OH) is identified and characterized on the Ni(111) surface by high‐resolution electron energy loss spectroscopy. We find clear evidence of stretching, bending, and translational modes that differ significantly from modes observed for H2O and O on Ni(111). Hydroxyl may be produced from water by two different methods. Annealing of water co‐adsorbed with atomic oxygen at 85 K to above 170 K leads to the formation of OH with simultaneous desorption of excess water. Pure water layers treated in the same fashion show no dissociation. However, the exposure of pure water to 20 eV electrons at temperatures below 120 K produces OH in the presence of adsorbed H2O. In combination with temperature‐programmed desorption studies, we show that the OH groups recombine between 180 and 240 K to form O and immediately desorbing H2O. The lack of influence of co‐adsorbed H2O at 85 K on the O? H stretching mode indicates that OH does not participate in a hydrogen‐bonding network.  相似文献   

7.
The photodesorption of H(2)O in its vibrational ground state, and of OH radicals in their ground and first excited vibrational states, following 157 nm photoexcitation of amorphous solid water has been studied using molecular dynamics simulations and detected experimentally by resonance-enhanced multiphoton ionization techniques. There is good agreement between the simulated and measured energy distributions. In addition, signals of H(+) and OH(+) were detected in the experiments. These are inferred to originate from vibrationally excited H(2)O molecules that are ejected from the surface by two distinct mechanisms: a direct desorption mechanism and desorption induced by secondary recombination of photoproducts at the ice surface. This is the first reported experimental evidence of photodesorption of vibrationally excited H(2)O molecules from water ice.  相似文献   

8.
The hydrolysis and polycondensation reactions of Al(OBu(s))3 have been studied by laser desorption/ionization (LDI), performed on the solid samples originating from different aluminum alkoxide solutions, prepared using the usual operating conditions employed in the sol-gel synthesis of Al2O3-based materials. CHCl3, CH3OH and CH3OH/H2O mixture were used as solvents. In the latter case different H2O/Al(OBu(s))3 molar ratios were adopted, i.e. 1:1, 1:2, and 1:4. The obtained hydrolysis and polycondensation species consist of polynuclear species containing < or =12 aluminum atoms. In the CHCl3 solutions, the formation of the observed hydrolysis products has been ascribed to the reaction with water present in the atmosphere during the LDI sample preparation and/or present at trace level in the solvent. When methanol is used as a solvent, extensive methanolysis reactions take place, thus originating oligomers with CH3O and OH substituents. The kinetics of formation of the various polynuclear species are dependent on the reaction environment and the reaction is faster in the presence of methanol. It is worth noticing that, regardless of the hydrolysis process, the polycondensation products can be considered as originating from a common tetrameric core [Al4O4(OBu)2(OH)2] around which different building blocks are condensed to form various oxo-polymeric species.  相似文献   

9.
Polycrystalline gadolinia-doped ceria (GDC) surfaces were studied using low-energy (5-400 eV) electron stimulated desorption (ESD). H(+), O(+), and H(3)O(+) were the primary cationic desorption products with H(+) as the dominant channel. H(+), H(3)O(+), and O(+) have a 22 eV threshold followed by a yield change around 40 eV. H(+) also has an additional yield change approximately 75 eV and O(+) has an additional change approximately 150 eV. The O(+) ESD yield change approximately 150 eV may indicate bond breaking of Gd-O and the involvement of oxygen vacancies. The H(+) and H(3)O(+) threshold data collectively indicate the presence of hydroxyl groups and chemisorbed water molecules on the GDC surfaces. ESD temperature dependence measurements show that the interaction of water with GDC surface defect sites, mainly oxygen vacancies, influences the desorption of H(+), O(+), and H(3)O(+). The temperature dependence of the O(+) ESD at 400 eV incident electron energy yields a 0.21 eV activation energy. This is close to the energy needed for oxygen vacancy production next to a pair of Ce(3+) on a CeO(2) surface. These results may indicate a correlation between the O(+) ESD yield and oxygen vacancy density on GDC surfaces and a potential correlation of O(+) ESD and GDC ionic conductivity.  相似文献   

10.
The low-energy, electron-stimulated production of molecular oxygen from thin amorphous solid water (ASW) films adsorbed on Pt(111) is investigated. For ASW coverages less than approximately 60 ML, the O(2) electron-stimulated desorption (ESD) yield depends on coverage in a manner that is very similar to the H(2) ESD yield. In particular, both the O(2) and H(2) ESD yields have a pronounced maximum at approximately 20 ML due to reactions at the Pt/water interface. The O(2) yield is dose dependent and several precursors (OH, H(2)O(2), and HO(2)) are involved in the O(2) production. Layered films of H(2) (16)O and H(2) (18)O are used to profile the spatial distribution of the electron-stimulated reactions leading to oxygen within the water films. Independent of the ASW film thickness, the final reactions leading to O(2) occur at or near the ASW/vacuum interface. However, for ASW coverages less than approximately 40 ML, the results indicate that dissociation of water molecules at the ASW/Pt interface contributes to the O(2) production at the ASW/vacuum interface presumably via the generation of OH radicals near the Pt substrate. The OH (or possibly OH(-)) segregates to the vacuum interface where it contributes to the reactions at that interface. The electron-stimulated migration of precursors to the vacuum interface occurs via transport through the hydrogen bond network of the ASW without motion of the oxygen atoms. A simple kinetic model of the nonthermal reactions leading to O(2), which was previously used to account for reactions in thick ASW films, is modified to account for the electron-stimulated migration of precursors.  相似文献   

11.
曾健青  钟炳中 《分子催化》1999,13(2):131-136
用蒙特水罗方法对水气转移反应两种典型机理的寝反应动力学进行了研究。结果表明,Temkin等人的氧化-还原机理中,无论反应物CO和H2O的相对浓度怎样变化,CO2和H2的初始生成速率总是相差很大。  相似文献   

12.
The surface oxidation and HP desorption of powder CdS were studied by means of X-ray photoetectron spectroscopy (XPS), quadrupole mass spectrometry (QMS) and in-situ FTIR. The results show that with the changes of surface composition and the elongation of store time of CdS there are four types of H2O thermally desorbed at different temperatures. It has also been found that through high-temperature air treatment for a short time the oxidized surface layer of CdS can prevent O2 and H2O in air from further attacking the inner CdS molecules.  相似文献   

13.
We present results of classical trajectory (CT) calculations on the sticking of protons to the basal plane (0001) face of crystalline ice, for normal incidence at a surface temperature (Ts) of 80 K. The calculations were performed for moderately low incidence energies (Ei) ranging from 0.05 to 4.0 eV. Surprisingly, significant reflection is predicted at low values of Ei (< or = 0.2 eV) due to repulsive electrostatic interactions between the incident proton and the surface water molecules with one of their H-atoms pointing upward toward the gas phase. The sticking probability increases with Ei and converges to unity for Ei > or = 0.8 eV. In the case of sticking, the proton is trapped in the ice forming a Zundel complex (H5O2+), with an average binding energy of 9.9 eV with a standard deviation of 0.5 eV, independent of the value of Ei. In nearly all sticking trajectories, the proton is implanted into the ice surface, with a penetration depth that increases with Ei. The strong interaction with the neighboring water molecules leads to a local rupture of the hydrogen bonding network, resulting in collision induced desorption of water (puffing), a process that occurs with significant probability even at the lowest Ei considered. The probability of water desorption increases with Ei. In nearly all trajectories in which water desorption occurs, a single three-coordinated water molecule is desorbed from the topmost monolayer.  相似文献   

14.
A comparative study of OH, O3, and H2O equilibrium aqueous solvation and gas-phase accommodation on liquid water at 300 K is performed using a combination of ab initio calculations and molecular dynamics simulations. Polarizable force fields are developed for the interaction potential of OH and O3 with water. The free energy profiles for transfer of OH and O3 from the gas phase to the bulk liquid exhibit a pronounced minimum at the surface, but no barrier to solvation in the bulk liquid. The calculated surface excess of each oxidant is comparable to calculated and experimental values for short chain, aliphatic alcohols. Driving forces for the surface activity are discussed in terms of the radial distribution functions and dipole orientation distributions for each molecule in the bulk liquid and at the surface. Simulations of OH, O3, and H2O impinging on liquid water with a thermal impact velocity are used to calculate thermal accommodation (S) and mass accommodation (alpha) coefficients. The values of S for OH, O3, and H2O are 0.95, 0.90, and 0.99, respectively. The approaching molecules are accelerated toward the liquid surface when they are approximately 5 angstroms above it. The molecules that reach thermal equilibrium with the surface do so within 2 ps of striking the surface, while those that do not scatter into the gas phase with excess translational kinetic energy in the direction perpendicular to the surface. The time constants for absorption and desorption range from approximately 35 to 140 ps, and the values of alpha for OH, O3, and H2O are 0.83, 0.047, and 0.99, respectively. The results are consistent with previous formulations of gas-phase accommodation from simulations, in which the process occurs by rapid thermal and structural equilibration followed by diffusion on the free energy profile. The implications of these results with respect to atmospheric chemistry are discussed.  相似文献   

15.
Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O(2). The OH(-) desorption yields increase markedly with exposure to O(2) at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O(-), attributable to dissociative electron attachment to trapped O(2) molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O(2) shows that this surprising increase in OH(-) desorption, at elevated temperatures, arises from the reaction of O(2) with damaged DNA sites. These results thus appear to be a manifestation of the so-called "oxygen fixation" effect, well known in radiobiology.  相似文献   

16.
Isotopic H/D exchange between coadsorbed acetone and water on the TiO2(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (O2 oxidation and mild vacuum reduction). Coadsorbed acetone and water interact repulsively on reduced TiO2(110) on the basis of results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 monolayers (ML) of a 1 ML d6-acetone on the reduced surface (vacuum annealed at 850 K to a surface oxygen vacancy population of 7%) exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high-temperature region of the d6-acetone TPD spectrum at approximately 340 K. The effect was confirmed with combinations of d0-acetone and D2O. The extent of exchange decreased on the reduced surface for water coverages above approximately 0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when surface oxygen vacancies were pre-oxidized with O2 prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d1- or d5-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at approximately 390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites, and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange mechanism likely involves an enolate or propenol surface intermediate formed transiently during the desorption of oxygen-stabilized acetone molecules.  相似文献   

17.
The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions.  相似文献   

18.
In the present paper, we studied the interaction between n-dodecylammonium alpha-glutamate (GDA)/n-C5H11OH/H2O assemblies and methemoglobin by UV-vis spectroscopy, X-ray diffraction, electron spin resonance (ESR), rheology, and freeze-fractured transmission electron microscopy (FF-TEM). It is found that W/O microemulsion forms at a lower n-pentanol content and O/W microemulsion forms at a lower water content with the addition of methemoglobin. The existence of methemoglobin reduces the hexagonal liquid crystal region, while the lamellar liquid crystal region is little changed in the presence of methemoglobin. Moreover, methemoglobin and GDA/n-C5H11OH/H2O assemblies can affect their structures and properties and the change in behavior is dependent on the content of methemoglobin and the composition and structure of the GDA/n-C5H11OH/H2O system. The relationship among the changes in the structure and properties of GDA/n-C5H11OH/H2O assemblies, the content of methemoglobin, and the composition and structure of GDA/n-C5H11OH/H2O assemblies may provide some important theoretical information for elucidation of the interaction between methemoglobin and blood cell membrane and may also be helpful for the cure of some blood diseases.  相似文献   

19.
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H(-), CH(3)(-)/NH(-), O(-)/NH(2)(-), OH(-), CN(-), and Br(-) was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN(-) desorption. An increase in the yields of OH(-) is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU?>?BrdA?>?BrdG?>?BrdC. Based on these results, 5-bromo-2(')-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.  相似文献   

20.
The OH stretch line shape of ice Ih exhibits distinct peaks, the assignment of which remains controversial. We address this longstanding question using two dimensional infrared (2D IR) spectroscopy of the OH stretch of H(2)O and the OD stretch of D(2)O of ice Ih at T = 80 K. The isotropic response is dominated by a 2D line shape component which does not depend on the pump pulse frequency. The decay time of the component that does depend on the pump frequency is calculated using singular value decomposition (bi-exponential decay H(2)O: 30 fs, 490 fs; D(2)O: 40 fs, 690 fs). The anisotropic contribution exhibits on-diagonal peaks, which decay on a very fast timescale (H(2)O: 85 fs; D(2)O: 65 fs), with no corresponding anisotropic cross-peaks. Both isotropic and anisotropic results indicate that randomization of excited dipoles occurs with a very rapid rate, just like in neat liquid water. We conclude that the underlying mechanism relates to the complex interplay between exciton migration and exciton-phonon coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号