首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
魏刚  余燕  黄锐 《高分子学报》2006,(9):1062-1068
采用马来酸酐接枝乙烯-辛烯共聚物弹性体(POE-g-MAH)与聚丙烯(PP)在双螺杆挤出机上进行熔融共混,制备了3种新型增韧改性剂.研究了增韧改性剂的种类及其用量对共混物的力学性能、相形态结构、熔融与结晶行为的影响.力学性能测试表明,POE-g-MAH与适量PP并用具有显著的协同增韧作用,当POE-g-MAH与PP的配比为70/30时,所得增韧改性剂(POEg2)具有最佳的增韧效果.当POEg2含量达到15%时,共混物的缺口冲击强度(Is)从纯PBT的7.5 kJ/m2提高到51.2 kJ/m2,与15%的纯POE-g-MAH弹性体增韧PBT具有相近的缺口冲击强度值.同时,共混物的拉伸强度(σb)损失最小.采用AFM和SEM观察发现,新型增韧改性剂作为分散相具有软壳-硬核结构.DSC测试表明,随增韧改性剂中PP含量增加到一定值时,壳-核结构中软壳层出现不完整现象,导致界面作用力减小,共混物的Is和σb都出现明显下降.  相似文献   

2.
高密度聚乙烯/丁基橡胶共混体系形态与性能的研究   总被引:1,自引:0,他引:1  
高密度聚乙烯(HDPE)与丁基橡胶(IIR)共混后,耐环境应力开裂性(ESCR)和抗冲击强度得到了提高。当IIR含量小于50%时,共混物中HDPE的晶格、结晶度、熔点保持未变。随IIR含量的增加,进入HDPE片晶间无定形区域的IIR量增加。少量IIR链段沿HDPE片晶厚度方向把一些片晶连接起来,共混物的抗冲击强度和ESCR因而获得显著提高。  相似文献   

3.
Rheological, thermal, and mechanical properties of polypropylene homo polymer (PPH)/amorphous poly alpha olefin (APAO) blends as a function of molecular weight, comonomer type and content, and blend composition have been investigated. Homo APAO grade showed better compatibility than copolymerized ones in terms of rheological and thermal properties. The mechanical strength showed strong dependence on APAO content and type, and the impact strength and melt index rapidly increased for certain types of APAO at and above 30 wt%. On comparison with commercially used PPH/ethylene–propylene rubber (EPR) blend system, it is supposed that PPH/APAO blend can be successfully used in thermoplastic polyolefin applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
TOUGHENING OF POLYCARBONATE WITH PBA-PMMA CORE-SHELL PARTICLES   总被引:1,自引:0,他引:1  
The miscibility, mechanical properties, morphology and toughening mechanism of PC/PBA-PMMA blends were investigated. The dynamic mechanical results show that PC/PBA-PMMA blend has good miscibility and strong interfacial adhesion. The Izod impact strength of blend PC/PBA-PMMA with 4% (volume fraction) PBA-PMMA core-shell modifier is 16 times higher than that of pure PC. The core-shell volume fraction and thickness of the PMMA shell have effect on the toughness of PC/PBA-PMMA blends. As PMMA volume fraction increases, the toughness of PC/PBA-PMMA blend increases, and reaches a maximum value at 30% volume fraction of PMMA or so. The tensile properties of PC/PBA-PMMA blend with a minimum amount of PBA-PMMA modifier show that brittle-tough transition has no significant variance in comparison with that of pure PC. The scanning electron microscopic (SEM) observation indicates that the toughening mechanism of the blend with the pseudo-ductile matrix modified by small core-shell latex polymer particles is the synergetic effect of cavitation and shear yielding of the matrix.  相似文献   

5.
Bamboo fiber (BF) as organic filler is characterized by mechanical properties analysis and morphology examination for polypropylene (PP) and polystyrene (PS) matrix blends. Effects of different filler content on tensile strength, flexural properties, and impact strength are proposed. It is observed from scanning electron microscopy (SEM) studies that addition of BF is beneficial in increasing mechanical strength via increasing the interface dispersed phase. The optimum tensile properties and impact properties of BF content were at 40 wt% for PP/PS/BF composite on melt mixing conditions. The results showed a significant improvement in mechanical properties of PP/PS/BF ternary blend composite. Comparing with untreated BF, content of carbon and nitrogen of treated BF decreased to 66.57 and 2.31%, oxygen content increased to 21.07%, and silicon content increased from 0 to 10.04%. The element ratio of O/C, N/C, and Si/C changed to 31.65, 3.47, and 15.08, respectively.  相似文献   

6.
A series of polyamide 6/polypropylene (PA6/PP) blends and nanocomposites containing 4 wt% of organophilic modified montmorillonite (MMT) were designed and prepared by melt compounding followed by injection molding. Maleic anhydride polyethylene octene elastomer (POEgMAH) was used as impact modifier as well as compatibilizer in the blend system. Three weight ratios of PA6/PP blends were prepared i.e. 80:20, 70:30, and 60:40. The mechanical properties of PA6/PP blends and nanocomposite were studied through flexural and impact properties. Scanning electron microscopy (SEM) was used to study the microstructure. The incorporation of 10 wt% POEgMAH into PA6/PP blends significantly increased the toughness with a corresponding reduction in strength and stiffness. However, on further addition of 4 wt% organoclay, the strength and modulus increased but with a sacrifice in impact strength. It was also found that the mechanical properties are a function of blend ratio with 70:30 PA6/PP having the highest impact strength, both for blends and nanocomposites. The morphological study revealed that within the blend ratio studied, the higher the PA6 content, the finer were the POEgMAH particles.  相似文献   

7.
The effect of weld line on the morphology and mechanical properties of 70/30 polystyrene and polyamide-6 blends with various amounts of poly(styrene-co-maleic anhydride) (SMA) as compatibilizer was investigated. For blends without or with low content of SMA, the dispersed domains near the weld line were elongated parallel to the weld line; and the dispersed domains in weld line were spherical. But for blend with high content of SMA, the isotropic morphology was observed. And the difference of morphology at weld line caused the distinction of fracture mechanism. The tensile strength of the blend is greatly influenced by the morphology of dispersed domains at weld line. While the morphology has only slight effect on impact strength of the blends.  相似文献   

8.
The mechanical properties and morphology of polycarbonate/ethylene-1-octylene copolymer (PC/POE) binary blends and PC/POE/ionomer ternary blends were investigated. The tensile strength and elongation at break of the PC/POE blends decreased with increasing the POE content. The impact strength of the PC/POE blends showed less dependence on thickness than that of PC. And the low-temperature impact strength of PC was modified effectively by addition of POE. The morphology of the PC/POE blends was observed by scanning electron microscope. The PC/POE weight ratio had a great effect on the morphology of the PC/POE blends. For the PC/POE (80/20)/ionomer ternary blends, low content (0.25 and 0.5 phr) of ionomer could increase the tensile properties of PC/POE (80/20) blend and had little effect on the impact strength. And 0.5 phr ionomer made the dispersed domain distribute more uniformly and finely than the blend without it. But with high content of ionomer, the degradation of PC made the mechanical properties of the blends deteriorate. Blending PC and ionomer proved the degradation of PC, and the molecular weight decreased with increasing the ionomer content.  相似文献   

9.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

10.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

11.
Abstract

Some oxygen‐containing groups such as C?O and C–O were introduced onto high‐density polyethylene (HDPE) chains by an ultraviolet irradiation technique without the addition of any additives, and this method causes no chemical pollution to the environment. This groups content increases with irradiation time. Gelation took place in the HDPE irradiated for 16?hr, and the gel content also increases with irradiation time. After irradiation, the crystal shape and crystalline plane spacing of HDPE remained unchanged; the melting temperature decreased, whereas the crystallinity and hydrophilicity increased. Due to the introduction of polar groups, the interfacial interaction between sericite–tridymite–cristobalite (STC) particles and irradiated HDPE, and the mechanical properties of irradiated HDPE/STC (60/40) blend were improved. Compared with the yield and impact strength of HDPE/STC (60/40) blend, those of the corresponding blend irradiated for 16?hr were increased from 25.1?MPa and 56?J/m to 29.1?MPa and 283?J/m, respectively.  相似文献   

12.
田明  闫寿科 《高分子科学》2016,34(7):820-829
The mechanical properties and phase morphologies of cis-1,4-butadiene rubber (BR) blended with polyethylene (PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties. According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed.  相似文献   

13.
吴石山 《化学学报》2002,60(7):1353-1356
采用FT-IR,XPS,凝胶分析以及熔融指数、接触角和力学性能测定,研究了不 同紫外辐照光强对高密度聚乙烯(HDPE)的化学结构、流动性、亲水性和辐照改性 HDPE在HDPE/聚碳酸酯(PC)共混体系中的增容效应的影响。在相同辐照时间下, 随紫外光强提高,引入HDPE分子链的含氧基团数量增加;在辐照过程中,紫外光强 对HDPE的交联有显著影响,在较低光强(32W/m~2)下辐照24h的HDPE无凝胶生成, 便在较高光强(45和78W/m~2)下辐照24h后,HDPE产生凝胶,其含量随紫外光强提 高而增多;与未辐照HDPE相比,较高光强下辐照HDPE的熔融指数有所下降,但其亲 水性得到明显改善;紫外辐照改性HDPE对HDPE/PC体系有增容作用,随紫外光强提 高其增容效应明显增强。与未增容HDPE/PC(80/20)体系相比,加入20%辐照 24hHDPE(光强78W/m~2)的HDPE/PC共混物的拉伸屈服强度从26.3MPa提高到30. 2MPa,缺口冲击强度从51J/m提高到158J/m。  相似文献   

14.
Core-shell impact modifiers are used to enhance the impact strength of thermoplastics such as polycarbonate. The shell of the modifier is designed specifically to interact with the matrix polymer because interfacial adhesion between the modifier and matrix is important in improving the impact strength. Several methods have been proposed to study the interactions at the modifier/matrix interface. One measure of this interaction is the strength of lap joints. The degree of interactions at the interface can be characterized as the thickness of the interfacial region where the chains of the two polymers mix. Yet another aspect is related to the effect of interfacial interactions on the dynamic mechanical properties of the blend. Previous studies have shown that the viscoelastic properties of these blends deviate from the emulsion models that have been proposed for such blends. The deviation of the measured viscoelastic behavior of these blends compared to that predicted by the models has been attributed to the formation of network structure of particles in the blend. The formation of the network structure is a consequence of larger effective volumes of the particles due to interactions at the interface with the matrix. This study provides a means of using rheological properties and the emulsion models to estimate the extent of interaction at the modifier/matrix interface. In blends used in this study it can be shown that the interactions between the modifier and matrix extend far beyond the boundary between the two and the estimated effective volume fraction of modifier is much larger than the actual modifier content in the blend. The effective volume fraction is frequency dependent and decreases with increasing frequency. The data suggest that beyond certain frequencies the modifier no longer interacts with the matrix and the system has properties similar to the matrix with holes. The data are presented which indicate that, within the range studied, lower modifier shell molecular weight results in a higher level of interaction with polycarbonate. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1095–1105, 1998  相似文献   

15.
The improvement of miscibility between toughened Polyamide-6 (PA6) and Styrene-Butadiene Rubber (SBR) was carried out using grafted Glycidyl Methacrylate (SBR-g-GMA). At first, the compatibilizers were prepared using different comonomers, Styrene, and N-vinyl pyrrolidone. Central composited design (CCD) was distinctly applied to study the influence of Glycidyl Methacrylate (GMA) content and comonomer/GMA on the process of compatibilizer preparation. Four models were developed for Gel content and Degree of grafting for both comonomers using Design-expert software. The models were used to calculate the optimum operating conditions and according to the Flory-Huggins parameter and obtained results, SBR-co-NVP-g-GMA was chosen as an effective compatibilizer. Afterward, another CCD was employed to scrutinize the effect of various amounts and grafting degree of compatibilizer on morphology and mechanical properties of PA6/SBR. The Interparticle distance and polydispersity were studied using a Scanning electron microscope (SEM) and also the Izod impact test inspected in order to evaluate the mechanical properties. Finally, modulus and impact strength were optimized to minimize the former and maximize the latter. Also, the most practical terms in the fitted model are statistically specified using F-value. The root causes for the improvement of blend properties were attributed to a chemical reaction between epoxy groups in SBR-g-GMA and both the carboxylic and amine groups in PA6. Impact strength (539.8 J/m) and modulus (2017.2 N/mm2) of the optimum blend indicate an excellent agreement with the amounts predicted by the models.  相似文献   

16.
The mechanical properties and phase morphologies of cis-1,4-butadiene rubber(BR) blended with polyethylene(PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties.According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed.  相似文献   

17.
报道了苯乙烯-丙烯等规嵌段共聚物(iPS-b-iPP)增溶作用及iPS-b-iPP/iPS/iPP三组分共混体系微观形态和力学性能的研究结果。iPS-b-iPP的加入明显地改善了iPS/iPP二组分共混物的力学性能;共聚物含量超过15%时,三组分共混物的抗冲击强度超过NIPS的抗冲击强度,并具有较高的耐热性。SEM结果表明,iPS-b-iPP在iPS/iPP共混中起到了相分散和相间“偶联”作用,并降低了共混体系的微相尺寸和增加相间相互作用或粘附性。iPS-b-iPP/iPS/iPP共混合金具有高的软化温度和刚性。  相似文献   

18.
PA6/HIPS/PP-g-(GMA-co-St)反应共混体系的研究   总被引:7,自引:0,他引:7  
通过扫描电镜、热分析、熔体流动速率、熔融扭矩和力学性能等测试方法研究了甲基丙烯酸缩水甘油酯(GMA)和苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(GMA-co-St)]对PA6/HIPS共混物的熔融流变性能、结晶行为、相形态和力学性能的影响.结果表明,在熔融共混过程中,PP-g-(GMA-co-St)中的环氧基与PA6的端氨基原位生成的接枝共聚物有效地降低了共混物的界面张力,提高了共混物的界面粘着力,使共聚物的流动速率降低,熔融扭矩提高;PA6分子链的规整性降低,结晶完善性变差.在PP-g-(GMA-co-St)的质量分数为10%时,共混物分散相的尺寸明显减少,力学性能得到较大提高;其中冲击强度超过纯PA6,达到HIPS水平.通过反应共混,制备了力学性能均衡的PA6/HIPS/PP-g-(GMA-co-St)共混物合金.  相似文献   

19.

Crosslinked polyvinyl alcohol (PVA) and chitosan polymer blends have been prepared by using gamma irradiation. Chitosan was used in the blends to prevent microbiological growth, such as bacteria and fungi on the polymer. The physical properties of the blend, such as gelation, water absorption, and mechanical properties were examined to evaluate the possibility of its application for wound dressing. A mixture of PVA/chitosan, with different ratios, were exposed to gamma irradiation doses of 20, 30, 50 KGy, to evaluate the effect of irradiation dose on the physical properties of the blend. It was found that the gel fraction increases with increasing irradiation dose and PVA concentration in the blend. Swelling percent increased as the composition of chitosan increased in the blend. The PVA/chitosan blend has a water content in the range between 40% and 60% and water absorption between 60% and 100%. The water vapor transmission rate value (WVRT) of the PVA/chitosan blend varies between 50% and 70%. The examination of the microbe penetration shows that the prepared blend can be considered as a good barrier against microbes. Thus, the PVA/chitosan blend showed satisfactory properties for use as a wound dressing.  相似文献   

20.
The mechanical properties of ozonized high density polyethylene (HDPE) blended with sericite-tridymite-cristobalite (STC) were studied in this paper. The experimental results show that some oxygen containing polar groups are introduced on the molecular chain of HDPE through ozonization, the compatibility between HDPE and STC is thus improved, the mechanical properties of the blend are markedly enhanced. Compared with untreated HDPE/STC (60/40) blend, the yield strength and notched impact strength of ozonized HDPE/STC (60/40) blend are increased from 27.0MPa to 29.5MPa and from 2.8kJ/m^2 to 13.3kJ/m^2, respectively, the notched impact strength is close to that of HDPE (13.6kJ/m^2),the yield strength is in excess of 3.9MPa of that of HDPE. The yield strength and notched impact strength will be further increased to 30.7MPa and 32.4kJ/m^2 in case the ozonized HDPE is blended with STC pretreated with silane coupling agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号