首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenon of altered carbohydrates in transformed cell surfaces has been studied through histochemical techniques using lectins. Specific binding patterns to normal and transformed mammary tissues were evaluated by Isoform 1 fromCratylia mollis lectin (Cra Iso 1). Protocols using a direct method, incubation of Cra Iso I conjugated to peroxidase (Cra Iso 1-Per) with mammary tissues, followed by diaminobenzidine and hydrogen peroxidase interaction, were performed. Neoplastic tissues, marked by Cra Iso 1, showed a higher intensity of staining than normal ones, in comparison withCanavalia ensiformis lectin, Concanavalin A (Con A), conjugated to peroxidase (Con A-Per). The assay with Cra Iso 1 also indicated a possible utilization of this lectin to characterize normal and transformed mammary cells.  相似文献   

2.
An electrode covered with a lectin/collagen film was constructed to investigate whether the film was usable as a reaction field of binding between the lectin and sugar. The protein-sugar binding on cell surface plays an important role to various physiologic processes. The film is considered to be a cell surface, due to its biocompatibility. The immobilization of concanavalin A (Con A) which is one of proteins was attempted by an electrostatic interaction of the protonated functional groups of film to the negative charged Con A. The merit of this immobilization is that the interaction hardly causes any changes in the protein structure. Because Con A recognizes mannose moiety, the mannose was labeled with an electroactive compound. The binding was estimated from the changes of the electrode response based on the holding of electroactive moiety in the binding site of Con A to the mannose moiety. However, the electrode responses of glucose and galactose labeled with the same substance did not change. The result shows that Con A is immobilized on the film and combines with labeled mannose. Therefore, it is clear that the collagen film is suitable as the reaction field to evaluate the protein-sugar binding.  相似文献   

3.
Concanavalin A (Con A), wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA) bound with either 125I, fluorescent dyes, or fluorescent polymeric microspheres were used to quantitate and visualize the distribution of lectin binding sites on mouse neuroblastoma cells. As viewed by fluorescent light and scanning electron microscopy, over 10(7) binding sites for Con A, WGA, and RCA appeared to be distributed randomly over the surface of differentiated and undifferentiated cells. An energy-dependent redistribution of labeled sites into a central spot occurred when the cells were labeled with a saturating dose of fluorescent lectin and maintained at 37 degrees C for 60 min. Reversible labeling using appropriate saccharide inhibitors indicated that the labeled sites had undergone endocytosis by the cell. A difference in the mode of redistribution of WGA or RCA and Con A binding sites was observed in double labeling experiments. When less than 10% of the WGA or RCA lectin binding sites were labeled, only these labeled sites appeared to be removed from the cell surface. In contrast, when less than 10% of the Con A sites were labeled, both labeled and unlabeled Con A binding sites were removed from the cell surface. Cytochalasin B uncoupled the coordinate redistribution of labeled and unlabeled Con A sites, suggesting the involvement of microfilaments. Finally, double labeling experiments employing fluorescein-tagged Con A and rhodamine-tagged WGA indicate that most Con A and WGA binding sites reside on different membrane components and redistribute independenty of each other.  相似文献   

4.
Highly avid interaction between carbohydrate ligands and lectin receptors nominally requires the ligand presentation in a clustered form. We present herein an approach involving Langmuir monolayer formation of the sugar ligands and the assessment of their lectin binding at the air-water interface. Bivalent alpha-D-mannopyranoside containing the glycolipid ligand was used to study its binding profiles with lectin Con A, in comparison to the corresponding monovalent glycolipid. In addition to the bivalent and monovalent nature of the glycolipid ligands at the molecular level, the ligand densities at the monolayer level were varied with the aid of a nonsugar lipid molecule so as to obtain mixed monolayers with various sugar-nonsugar ratios. Lectin binding of bivalent and monovalent ligands at different ratios was monitored by differential changes in the surface area per molecule of the mixed monolayer, with and without the lectin. The present study shows that maximal binding of the lectin to the bivalent ligand occurs at lower sugar densities at the interface ( approximately 10% sugar in the mixed monolayer) than for that of the monovalent ligand ( approximately 20% sugar in the mixed monolayer). It is observed that complete coverage of the monolayer with only the sugar ligands does not allow all of the sugars to be functionally active.  相似文献   

5.
Partially purified S1 nuclease was bound through its carbohydrate moiety to Con A-Sepharose containing increasing amounts of lectin. The retention of activity was high, varying essentially from 75% on the "low lectin" matrix (1 mg Con A/mL of Sepharose), to no detectable activity on the "high lectin" matrix (8 mg Con A/mL of Sepharose). However, approximately 50% activity could be restored in "high lectin" matrix when the coupling was carried out in the presence of glucose, suggesting that the loss of activity on the "high lectin" matrix is caused by conformational changes brought about by the multiple attachment of the enzyme to the matrix. Interaction of Con A with S1 nuclease was used to predict the nature of carbohydrate moiety and its location with respect to the active site of the enzyme. Immobilization resulted in an increase in the optimum temperature, pH, and temperature stabilities, but it did not affect the pH optimum. A marginal increase in the apparent Km was observed. The bound enzyme also showed enhanced stability toward 8 M urea. On repeated use, the bound enzyme retained more than 80% of its initial activity after 6 cycles. These results are discussed taking into consideration the factors affecting immobilized enzymes. In addition, the potential use of immobilized S1 nuclease as an analytical tool is discussed.  相似文献   

6.
Nowadays, there is an increase of investigations into the fibroadenoma, mainly because some studies have shown that the occurrence of fibroadenoma is linked to an increased risk of developing breast carcinoma. Currently, the chemiluminescence biomarkers are applied for validation methods and screening. Here, a lectin chemiluminescence is proposed as new histochemistry method to identify carbohydrates in mammary tumoral tissues. The lectins concanavalin A (Con A) and peanut agglutinin (PNA) conjugated to acridinium ester were used to characterize the glycocode of breast tissues: normal, fibroadenoma, and invasive duct carcinoma (IDC). The lectin chemiluminescence expressed in relative light units (RLU) was higher in fibroadenoma and IDC than in normal tissue for both lectins tested. The relationship RLU emission versus tissue area described a linear and hyperbolic curve for IDC and fibroadenoma, respectively, using Con A whereas hyperbolic curves for both transformed tissues using PNA. RLU was abolished by inhibiting the interaction between tissues and lectins using their specific carbohydrates: methyl-α-d-mannoside (Con A) and galactose (PNA). The intrinsic fluorescence emission did not change with combination of the lectins (Con A/PNA) to the acridinium ester for hydrophobic residues. These results represent the lectin chemiluminescence as an alternative of histochemistry method for tumoral diagnosis in the breast.  相似文献   

7.
Abstract— The oligosaccharides of rod and cone membranes were investigated with the aid of fluorescence and 125I-labeled lectins. Additionally, the ability of lectins to cause agglutination in rod outer segment (ROS) suspensions was used as an index for the presence of the corresponding lectin receptors. The specificities of lectin-ligand interactions were determined from studies of inhibition by various haptene sugars. The membranes of both rods and cones have receptors for Con A, PNA, RCA-120, RCA-60, SBA and WGA. The affinity of PNA for accessory cones is much higher than for the principal cones. There do not appear to be receptors for UeA and LTA on rods or cones. Additionally, receptors for HPA and DBA were identified on ROS. These results suggest the existence of the following sugar residues:

The binding of Con A and WGA to ROS membrane proteins electrophoresed on SDS-polyacrylamide gels was also investigated. In addition to rhodopsin, these lectins also bind to the 291000-dalton protein, indicating that it is a glycoprotein containing mannose and GlcNAc.  相似文献   

8.
Although the carbohydrate–lectin interactions have been intensively investigated, there is little report concerning the factors that affect the carbohydrate–lectin interaction. The interactions between concanavalin A (Con A) and glycopolymers, namely poly(2-(methacrylamido)-glucopyranose) and poly(2-methacrylamido-2-deoxy-glucitol) containing pyranose ring form and open form of glucosamine, respectively, have been investigated by a combination of isothermal titration calorimetry and quartz crystal microbalance-dissipation. Our results show that not only the pyranose ring form of glucosamine but also the open form can bind to Con A. Moreover, we investigate the influence of temperature on the carbohydrate–lectin interaction. As the temperature increases, the carbohydrate–lectin interaction is enhanced.  相似文献   

9.
Small glycodendrimers with α‐mannosyl ligands were synthesized by using copper‐catalyzed azide–alkyne coupling chemistry and some of these molecules were used as multivalent ligands to study the induction of concanavalin A (Con A) precipitation. The results showed that the monovalent mannose ligand could induce the precipitation of Con A. This unexpected finding initiated a series of studies to characterize the molecular basis of the ligand–lectin interaction. The atypical precipitation is found to be specific to the mannose, fluorescein moiety (FITC), and Con A. Apparently the mannose ligand binds to Con A through hydrogen‐bonding interactions, whereas the binding of FITC is mediated by hydrophobic forces.  相似文献   

10.
A hybrid functional biomolecular interface designed at a molecular size level is very effective at capturing an analyte with high sensitivity even if the interaction is very weak, as when detecting proteins with carbohydrate. We designed and processed a protein (lectin) recognition molecular interface taking the following points into consideration: (1) the height (molecular length) difference between the capturing and spacer molecules; (2) the ratio of capturing molecules in the recognition interface. When the height difference between the maltoside part (Concanavalin A (Con A) recognition group) and the OH group terminated spacer molecules exceeded (>(CH(2))(6)), the association rate constant (k(a)) became larger (k(a)(1/Ms): ~2.6 times) and the dissociation constant (K(D)) became much smaller (K(D)(M): 1.0 × 10(-6): ~0.17 times) compared with the similar heights (lengths) of both molecular interfaces. With regard to maltoside density, a 100% maltoside monolayer was unsuitable for detecting Con A. We constructed a nanostructured recognition site with a maltoside part of 10%, which was the most suitable ratio for Con A detection. The binding interaction between Con A and the maltoside group was changed from monovalent binding to bivalent binding when the maltoside part was diluted in the recognition interface. From electrochemical measurements, even though there was a small amount of maltoside component on the suitable recognition monolayer, quality similar to that of 100% maltoside was observed.  相似文献   

11.
The site-selective incorporation of two different fluorophores into a naturally occurring protein (lectin, a sugar-binding protein) has been successfully carried out using two distinct orthogonal chemical methods. By post-photoaffinity labeling modification, Con A, a glucose- and mannose-selective lectin, was modified with fluorescein in the proximity of the sugar binding site (Tyr100 site), and the controlled acylation reaction provided the site-selective attachment of coumarin at Lys114. In this doubly modified Con A, the fluorescein emission changed upon the binding to the corresponding sugars, such as the glucose or mannose derivatives, whereas the coumarin emission was constant. Thus, the doubly modified Con A fluorescently sensed the glucose- and mannose-rich saccharides in a ratiometric manner while retaining the natural binding selectivity and affinity, regardless of the double modification. On the benefit of the ratiometric fluorescent analysis using two distinct probes, the sugar trimming process of a glycoprotein can be precisely monitored by the engineered Con A. Furthermore, the doubly modified Con A can be used not only for the convenient fluorescent imaging of saccharides localized on a cell surface, such as the MCF-7, a breast cancer cell having rich high-mannose branch, but also for the ratiometric fluorescent sensing of the glucose concentration inside HepG2 cells. These results demonstrated that the semisynthetic lectin modified doubly by two distinct chemistries is superior to the singly modified one in function, and thus, it may be potentially useful in cell, as well as in test tube.  相似文献   

12.
The synthesis of mannose‐substituted tetraphenylethenes (TPEs) and their aggregation‐induced emission (AIE) behavior, induced by interactions with concanavalin A (Con A), are reported. A mixture of the mannose‐TPE conjugates and Con A in a buffer solution displays an intense blue emission on agglutination within a few seconds, which serves as a “turn‐on” fluorescent sensor for lectins. The sensing is also selective: the conjugates act as a sensor for Con A, but do not sense a galactose‐binding lectin, PNA. Con A‐recognition is not affected even in the presence of other proteins in a mixture. The conjugates also exhibit high sensitivity to detect Con A. An increased sensitivity of the conjugates results if mannopyranoside substituents are linked to the TPE‐core unit with a flexible chain and/or when the number of mannose residues increases.  相似文献   

13.
A series of precision glycomacromolecules is prepared following previously established solid phase synthesis allowing for controlled variations of interligand spacing and the overall number of carbohydrate ligands. In addition, now also different linkers are installed between the carbohydrate ligand and the macromolecular scaffold. The lectin binding behavior of these glycomacromolecules is then evaluated in isothermal titration calorimetry (ITC) and kinITC experiments using the lectin Concanavalin A (Con A) in its dimeric and tetrameric form. The results indicate that both sterical and statistical effects impact lectin binding of precision glycomacromolecules. Moreover, ITC results show that highest affinity toward Con A can be achieved with an ethyl phenyl linker, which parallels earlier findings with the bacterial lectin FimH. In this way, a first set of glycomacromolecule structures is selected for testing in a bacterial adhesion–inhibition study. Here, the findings point to a one‐sugar binding mode mainly affected by sterical restraints of the nonbinding parts of the respective glycomacromolecule.  相似文献   

14.
Abstract— Intact disks and inverted disks were prepared from bovine retinal rods and the distribution in the disk membrane of such enzymes as guanyl cyclase, cyclic nucleotide phosphodiesterase, GTP binding protein (GTPase), 5'-nucleotidase and rhodopsin kinase was investigated. Guanyl cyclase was not detected in the disk; the enzyme activity was high in a membranous fraction containing the cilium or axoneme and the rod outer segment plasma membrane. Cyclic nucleotide phosphodiesterase, GTP binding protein (GTPase) and rhodopsin kinase were associated on the external surface of disk in the presence of 2 m M Mg2+. The enzymes dissociated from the membrane when Mg2+ was depleted. Thus, magnesium ion seems to regulate the state of these enzymes in the outer segment. 5'-Nucleotidase activity was low in intact disks but was significantly enhanced after inversion of the disk. The catalytic site of the enzyme, therefore, must be located on the internal (intradiscal) surface. Since the disks are known to be formed by invagination of the plasma membrane, 5'-nucleotidase, by inference, would have its catalytic site exposed on the external surface of the plasma membrane. Preliminary experiments showed that the capability of light-activated rhodopsin to activate cyclic nucleotide phosphodiesterase was inhibited by phosphorylation of the pigment. This supports the idea that rhodopsin kinase, cyclic nucleotide phosphodiesterase and GTPase exist as a functional complex on rod membranes.  相似文献   

15.
A new general method, post-photoaffinity-labeling modification (PPALM), for constructing fluorescent saccharide biosensors based on naturally occurring saccharide-binding proteins, lectins, is described in detail. An active-site-directed incorporation of a masked reactive site into a lectin was conducted by using a photoaffinity labeling technique followed by demasking and then chemical modification to yield a fluorescent lectin. Two photoaffinity labeling reagents were designed and synthesized in this study. The labeling reagent with a photoreactive site appended through a disulfide link to a mannoside unit was bound to the saccharide-binding pocket of the lectin concanavalin A (Con A). After light irradiation, the mannoside unit was cleaved by reduction. The unique thiol group thus produced was site-specifically modified with various fluorescent groups (dansyl, coumarin, or dimethylaminobenzoate derivatives) to afford fluorescent Con As. The labeling site was characterized by protease-catalyzed digestion followed by HPLC, MALDI-TOF MS, and tandem mass-mass spectrometry; these methods indicated that the photolabeling step is remarkably site specific. Strong fluorescence was observed in the engineered Con A with a fluorophore, and the emission changed sensitively upon saccharide complexation. The binding constants for various saccharides were determined by fluorescence titration and demonstrated that the binding selectivity and affinity of the engineered Con As are comparable to those of native Con A. The red shift of the emission maximum, the decrease in the fluorescence anisotropy of the dansyl unit, and the increase in the twisted intramolecular charge transfer emission caused by sugar binding to the engineered Con A explicitly indicate that the microenvironment of the appended fluorophores changes from a restricted and relatively hydrophobic environment into a rather freely mobile and hydrophilic environment.  相似文献   

16.
《Analytical letters》2012,45(10):1677-1687
Abstract

Concanavalin A- Sepharose affinity chromatography is a powerful tool for isolation or purification of peripheral or integral membrane proteins or other glycoproteins. The insecticidal crystal toxin from Bacillus thuringiensis subsp. kurstaki is a glycoprotein containing “high-mannose” or “hybrid”-type sugar chains. The protein has a high binding affinity for concanavalin A lectin and could not be eluted even with 0.5M methyl α-D-mannopyranoside. Nonspecific elution with 0.03% SDS coeluted the matrix con A with bound protein. Experimental results indicated that con A leaching is mainly because of inclusion of detergents in buffer systems and may not be directly related to the nature of the sample protein.

2 Abbreviations used: Con A: concanavalin A, SDS: sodium dodecyl sulfate, SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis, MeG: methyl α-D-glucopyranoside, MeM: methyl α-D-mannopyranoside  相似文献   

17.
A membrane protein of relative molecular mass (Mr) 127,000 was identified by photoaffinity labelling as (a component of) the uptake system for small peptides and beta-lactam antibiotics in rabbit small intestine. This binding protein is a microheterogeneous glycosylated integral membrane protein which could be solubilized with non-ionic detergents and enriched by lectin affinity chromatography on wheat germ lectin agarose. For the final purification of this protein and separation from aminopeptidase N of Mr 127,000, fast protein liquid chromatography (FPLC) was used. Gel permeation, hydroxyapatite and hydrophobic interaction chromatography were not successful for the purification of the 127,000-dalton binding protein. By anion-exchange chromatography on a Mono Q column with either Triton X-100 or n-octylglucoside as detergent, a partial separation of the 127,000-dalton binding protein from aminopeptidase N was achieved. By cation-exchange chromatography on a Mono S HR 5/5 column at pH 4.5 using Triton X-100 as detergent also only a partial separation from aminopeptidase N could be achieved. If, however, Triton X-100 was replaced with n-octylglucoside, the binding protein for beta-lactam antibiotics and small peptides of Mr 127,000 could be completely separated from aminopeptidase N. These results indicate that Triton X-100 should be avoided for the purification of integral membrane proteins because mixed protein-detergent micelles of high molecular weight prevent a separation into the individual membrane proteins. The putative peptide transport protein was finally purified by rechromatography on Mono S and was obtained more than 95% pure as determined densitometrically after sodium dodecyl sulphate gel electrophoresis. By application of FPLC even microheterogeneous membrane glycoproteins from the intestinal mucosa can be purified to such an extent that a sequence analysis and immunohistochemical localization with antibodies prepared from the purified protein is possible.  相似文献   

18.
The specificity of lactoperoxidase-catalyzed iodination for the proteins of the hepatoma tissue culture cell plasma membrane was examined by histochemical, biochemical, and cell fractionation techniques. Light microscope autoradiography of sectioned cells shows the incorporated label to be localized primarily at the periphery of the cell. Most of this label can be released from the cell by trypsin but not by collagenase or hyaluronidase. The label is recovered from the cells as either monoiodotyrosine or diiodotyrosine after hydrolysis of cell extracts with a mixture of proteolytic enzymes. The label co-purifies during cell fractionation with an authentic liver cell plasma membrane marker enzyme, 5'-nucleotidase. Thus, the incorporated iodide is itself a valid marker for those membrane polypeptides having tyrosine residues accessible to the lactoperoxidase. The polypeptide complexity of the purified plasma membrane was examined by high resolution dodecyl sulfate-polyacrylamide gel electrophoresis. At least 50 polypeptides in the membrane are accessible to iodination. These polypeptides probably represent the bulk of the protein mass of the membrane and iodinating them does not affect cell viability, growth rate, or cell function. Labeling experiments with fucose and glucosamine show that at least nine of the iodinated peptides may be glycoproteins.  相似文献   

19.
A neutral polyfluorene derivative that contains 20 mol % 2,1,3‐benzothiadiazole (BT) is synthesized by Suzuki cross‐coupling polymerization. A cationic conjugated polymer A and an α‐mannose‐bearing polymer B are subsequently obtained through different post‐polymerization methods. As a result of the charged pendant groups or sugar‐bearing groups attached to the polymer side chains, both A and B show good water‐solubility. The titration of Concanavalin A (Con A) into polymer aqueous solution leads to different fluorescent responses for polymers A and B . Polymer A does not show any obvious fluorescence change upon interaction with Con A, whereas polymer B shows fluorescence increase in BT emission intensity when Con A is added. This is because of the specific interaction between α‐mannose and Con A, which induces polymer aggregation, and then facilitates energy transfer from the phenylene–fluorene segments to the BT units. A practical calibration curve ranging from 1 nM to 250 nM is obtained by correlating the changes in BT emission intensity with Con A concentration. The advantage of polymer B ‐based Con A macromolecular probe is that it shows signal increase upon Con A recognition, which is significantly different from other conjugated polymer‐based fluorescence quenching assays.  相似文献   

20.
A glycopolymer bearing glucose residues was tethered onto the surface of polypropylene microporous membrane by UV-induced graft polymerization ofα-allyl glucoside.Concanavalin A (Con A),a glucose recognizing lectin,could be specifically adsorbed to the membrane surface.On the other hand,the membrane surface showed no recognition ability to another lectin peanut agglutinin.Moreover,the recognition complex between the glycosylated membrane surface and Con A could be inhibited by glucose and mannose solutio...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号