首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inner hair cell responses to sound were monitored while direct current was applied across the membranous labyrinth in the first turn of the guinea pig cochlea. The current injection electrodes were positioned in the scala vestibuli and on the round window membrane. Positive and negative current (less than 100 microA) caused changes in the sound-evoked dc receptor potentials which were dependent on the sound frequency and intensity. The frequencies most affected by this extracellular current were those comprising the "tip" portion of the inner hair cell frequency tuning characteristic (FTC). The influence of current increased with increasing frequency. Positive current increased the amount of dc receptor potential for the affected frequencies while negative current decreased the potential. Current-induced changes (on a percentage basis) were greater for low intensity sounds and the negative current direction. These frequency specific changes are evidenced as a loss in sensitivity for the tip area of the FTC and a downward shift of the inner hair cell characteristic frequency. Larger current levels (greater than 160 microA) cause more complex changes including unrecoverable loss of cell performance. In separate experiments positive and negative currents (less than 1.1 microA) were injected into the inner hair cell from the recording electrode during simultaneous measurement of the sound-evoked dc receptor potential. This condition caused a shift in IHC sensitivity that was independent of sound frequency and intensity. Positive current decreased the sensitivity of the level of the cell while negative current increased the responses. The effect of current level on sound-evoked dc receptor potential was nonlinear, as comparatively greater increases in cell response were observed for negative than decreases for positive current. The intracellular current injection results are accounted for by the mechano-resistive model of hair cell transduction, where nonlinear responses with current level may reflect outward rectification. Response changes induced by extracellular current are evidence of current effects on both inner and outer hair cells. The frequency and intensity dependences are hypothesized to represent voltage mediated control of inner hair cell response by the outer hair cells.  相似文献   

2.
A society is a medium with a complex structure of one-to-one relations between people. Those could be relations between friends, wife–husband relationships, relations between business partners, and so on. At a certain level of analysis, a society can be regarded as a gigantic maze constituted of one-to-one relationships between people. From a physical standpoint it can be considered as a highly porous medium. Such media are widely known for their outstanding properties and effects like self-organized criticality, percolation, power-law distribution of network cluster sizes, etc. In these media supercritical events, referred to as dragon-kings, may occur in two cases: when increasing stress is applied to a system (self-organized criticality scenario) or when increasing conductivity of a system is observed (percolation scenario). In social applications the first scenario is typical for negative effects: crises, wars, revolutions, financial breakdowns, state collapses, etc. The second scenario is more typical for positive effects like emergence of cities, growth of firms, population blow-ups, economic miracles, technology diffusion, social network formation, etc. If both conditions (increasing stress and increasing conductivity) are observed together, then absolutely miraculous dragon-king effects can occur that involve most human society. Historical examples of this effect are the emergence of the Mongol Empire, world religions, World War II, and the explosive proliferation of global internet services. This article describes these two scenarios in detail beginning with an overview of historical dragon-king events and phenomena starting from the early human history till the last decades and concluding with an analysis of their possible near future consequences on our global society. Thus we demonstrate that in social systems dragon-king is not a random outlier unexplainable by power-law statistics, but a natural effect. It is a very large cluster in a porous percolation medium. It occurs as a result of changes in external conditions, such as supercritical load, increase in system elements’ sensitivity, or system connectivity growth.  相似文献   

3.
Kainic acid (KA) is a potent glutamate analog that can temporarily or permanently damage glutamatergic neurons. The purpose of the present study was to determine the short- and long-term effects of KA on chicken otoacoustic emissions and cochlear potentials. A chronic electrode was used to record the compound action potential (CAP), cochlear microphonic (CM), and the slow, positive neural potential (SPNP), a predominantly dc response. The CM, CAP, SPNP, and distortion product otoacoustic emissions (DPOAEs) were recorded before and after infusing 10 microl of a low dose (KA-L, 0.3 mM) or high dose (KA-H, 5 mM) of KA into scala tympani. KA caused a rapid and large reduction in CAP and SPNP amplitude in both the KA-H and KA-L groups; however, the CM and DPOAEs were largely unchanged. The amplitude of the CAP and SPNP in the KA-L group began to recover around 1 week post-KA, but was approximately 50% below normal at 4 weeks post-KA. In contrast, the CAP and SPNP showed no signs of recovery in the KA-H group. The results suggest that KA has no effect on the CM and DPOAEs generated by the hair cells, but selectively damages the CAP generated by the cochlear ganglion neurons. The reduction in the avian SPNP suggests that the response originates in the cochlear afferent neurons, unlike the summating potential (SP) in mammals that is generated in hair cells.  相似文献   

4.
The auditory compound action potential (CAP) represents synchronous VIIIth nerve activity. Clicks or impulses have been used in the past to produce this synchrony under the assumption that the wide spectral spread inherent in transient signals will activate a large portion of the cochlear partition. However, the observation that only auditory nerve units tuned above 3 kHz contribute to synchronous activity in the N1P1 complex of the CAP [Dolan et al., J. Acoust. Soc. Am. 73, 580-591 (1983)] suggests that temporal delays imposed by the traveling wave result in an asynchronous pattern of VIIIth nerve activation. In order to determine if units tuned below 3 kHz could be recruited into the CAP response, the present study uses tone bursts of exponentially rising frequency to hypothetically activate synchronous discharges of VIIIth nerve fibers along the length of the cochlear partition. The equations defining the frequency sweeps are calculated to be the inverse of the delay-line characteristics of the guinea pig cochlear partition. The resultant sweeps theoretically cause a constant phase displacement of a large portion of the cochlear partition at one time. Compound action potentials recorded in response to the rising frequency sweeps were compared to CAPs evoked by corresponding falling frequency sweeps and clicks. Analysis of the CAP waveforms showed narrower N1 widths and larger N1 and P1 amplitudes for rising sweeps when compared to falling sweeps. This is consistent with the hypothesis of increased synchrony. A further test of the hypothesis was made by using high-pass masking noise to evaluate the contributions of discrete cochlear locations to the CAP ("derived" CAP). Latency functions of the derived CAPs for clicks and falling frequency sweeps showed progressive increases in latency as the cutoff frequency of the high-pass filter was lowered. The latency of the derived CAP for these stimulus conditions reflects traveling wave delays [Aran and Cazals, "Electrocochleography: Animal studies," in Evoked Electrical Activity in The Auditory Nervous System (Academic, New York, 1978)]. In contrast, derived CAPs obtained from rising sweeps showed no change in latency for any cutoff frequencies, indicating a constant delay of response for fibers with different characteristic frequencies (CFs). These results support the theoretical premise underlying the derivation of the rising sweep: Spectral energy with the appropriate temporal organization, dictated by basilar membrane traveling wave properties, will increase CAP synchrony.  相似文献   

5.
New solid-state lasers and their application potentials   总被引:8,自引:0,他引:8  
In recent years, Nd:YAG-lasers have found increasing interest in many fields of high-power applications that formerly had been the domain of CO2-lasers. This was mainly due to several consequences of their wavelength, such as a higher absorptivity, lower sensitivity against laser-induced plasmas and, in particular, the use of flexible glass fibres for beam handling. Disadvantages like poor beam quality and low efficiency are being effectively reduced by recent developments of diode-pumped systems. Some promising concepts based on different pumping techniques and crystal geometries — rods, discs, fibres — will be discussed in view of attainable beam quality and means of power scaling. The second part of the paper will deal with investigations aimed at utilizing the beneficial properties of Nd:YAG-lasers, especially for welding. In particular, the advantages of the twin-focus technique are discussed in some detail with regard to power scaling, process improvements and flexibility increase. Based upon experience, the extension to a multi-focus technique is proposed by presenting experimental data obtained with lamp-pumped high-power lasers and results of numerical modelling. This evidence demonstrates the potential for industrial applications and provides an idea of what can be expected from the new generation of diode-pumped solid-state lasers with high beam quality.  相似文献   

6.
This review discusses the physical mechanisms of absorptive and dispersive nonlinearity in amplifiers resulting from interband and intraband electron transitions, with an assessment of the relative strengths and response times of these nonlinearities. Where appropriate, the potential applications of these nonlinearities in optical networks are also indicated.  相似文献   

7.
This study describes a method for recording the electrically evoked, whole-nerve action potential (EAP) in users of the Ineraid cochlear implant. The method is an adaptation of one originally used by Charlet de Sauvage et al. [J. Acoust. Soc. Am. 73, 615-627 (1983)] in guinea pigs. The response, recorded from 11 subjects, consists of a single negative peak that occurs with a latency of approximately 0.4 ms. EAP input/output functions are steeply sloping and monotonic. Response amplitudes ranging up to 160 micro V have been recorded. Slope of the EAP input/output function correlates modestly (approximately 0.6-0.69) with results of tests measuring word recognition skills. The refractory properties of the auditory nerve were also assessed. Differences across subjects were found in the rate of recovery from the refractory state. These findings imply that there may be difference across subjects in the accuracy with which rapid temporal cues can be coded at the level of the auditory nerve. Reasonably strong correlations (approximately 0.74-0.85) have been found between the magnitude of the slope of these recovery curves and performance on tests of word recognition.  相似文献   

8.
The development of sound-evoked responses in Chinchilla lanigera was studied from postnatal ages P0-1 (first 24 h) to adult. Cochlear microphonic (CMs) and compound action potentials (CAPs), representing ensemble sound-evoked activities of hair cells and auditory nerve fibers, respectively, were present as early as age P0-1. The data indicate that CM thresholds and sensitivities were generally adult-like (i.e., fall into adult ranges) at birth, but suprathreshold CM amplitudes remained below adult ranges through P28. CAP thresholds reached adult-like values between P7-P14, but the suprathreshold CAP amplitude continued to increase until ~P28. The results confirm the auditory precociousness of the chinchilla.  相似文献   

9.
A.G. Knapp 《Surface science》1973,34(2):289-316
This review deals with the precise meaning of work functions and surface potentials for single crystal and polycrystalline surfaces. The methods of measuring surface potentials using a diode valve are described together with a number of the experimental diode cells used for these measurements. Particular attention is paid to the value of surface potentials measured by the diode method on polycrystalline surfaces.  相似文献   

10.
Effect of temperature and surface tension on surface during sedimentation is studied using atomic force microscopy. Effects of surface tension is incorporated by using ∼1 mm radius water droplets. Surface tension of water droplet directed the deposition of dissolved particles around the perimeter of the droplet; leaving almost hollow circle in the middle with light deposition due to the particles being close to the surface. Evaporating shallow water solutions left random salt structures on the surface. Growth exponents are calculated along with the fractal dimension. For sedimentation process in shallow water (depth of ∼2 mm), a transition is observed from continuum model (1.88±0.2) to KPZ (0.406±0.082) universality class around ∼1 μm at room temperature. For droplets evaporation, turbulent (multi-affine) to self-affine transition is observed. Fractal dimensions (FD) for the droplets are found to be between one and two. The FD values are consistent with the fact that competing nonlinear terms are present in the system.  相似文献   

11.
Rudenko  O. V. 《Doklady Physics》2020,65(9):317-322
Doklady Physics - There are three types of nonlinearities in problems of acoustic flows. First, there is a nonlinear parameter in the expression for the radiation force causing the flows. Second,...  相似文献   

12.
We show that good approximations to the exact equivalent local potential (ELP) and damping factor of a nonlocal Perey-Buck potential can be calculated in the partial wave WKB approximation of Horiuchi. The exact ELP and damping factor are obtained by means of a method previously given by one of us. We also confirm that an approximate ELP proposed by Bauhoff et al. is of comparable accuracy as the Horiuchi approximation. Thesel-dependent ELP's exhibit reduced attraction in the interior and provide a test for higher order WKB approximations. We subsequently obtain an equivalent velocity dependent potential (EVDP) which is even exactly wave function equivalent to the original nonlocal potential. This almost local potential, unlike the trivial equivalent local potential, is smooth and well-behaved and is therefore particularly useful in nuclear reactions where the off-shell behaviour of the potential is important.  相似文献   

13.
A novel continuum model is proposed to describe the deformations of a planar lipid bilayer suspended across a circular pore. The model is derived within a new theoretical framework for smectic A liquid crystals in which the usual director n , which defines the average orientation of the molecules, is not constrained to be normal to the layers. The free energy is defined by considering the elastic splay of the director, the bending and compression of the lipid bilayer, the cost of tilting the director with respect to the layer normal, the surface tension, and the weak anchoring of the director. Variational methods are used to derive the equilibrium equations and boundary conditions. The resulting boundary value problem is then solved numerically to compute the fully nonlinear displacement of the layers and tilt of the lipid molecules. A parametric study shows that an increase in surface tension produces a decrease in the deformation of the lipid bilayers while an opposite effect is obtained when increasing the anchoring strength.  相似文献   

14.
V.K. Tewary 《Physics letters. A》2011,375(43):3811-3816
A phenomenological potential is constructed for silicon, germanium, and their binary alloy. As in the modified embedded atom model (MEAM), the interatomic interactions are assumed to arise from the overlap of the electron wave functions. However, the calculation of energy is quite different in the two models. The proposed potential has seven adjustable parameters in contrast to ten or more in MEAM but gives perfect fit with the measured values of seven most important quantities for characterizing strained silicon: cohesive energy, equilibrium lattice constant, vacancy formation energy, Raman frequency, and the three elastic constants. The potential should be suitable for lattice statics calculations on strained silicon.  相似文献   

15.
After an outline of work on rare-gas systems, which serves as a target for parallel work on alkali halides, and an initial brief survey of those parts of this parallel work for which results have been obtained, interionic potential models for alkali halides are considered in some detail. The rigid ion potentials of Fumi and Tosi are discussed and then a major part of the section is devoted to deriving a new set of polarizable ion potentials, which incorporate the ideas behind the lattice dynamical shell model. Extensions which include many-body terms in the potentials are considered briefly and finally the information which can be obtained from alkali halide diatomic molecules is discussed.

In the third section methods of computer simulation for ionic liquids are outlined, concentrating on the molecular dynamics method, and some of the properties which can be obtained by analysing the ion trajectories are listed. Results from simulations, including some new work on LiF, NaCl and RbI, are reviewed.  相似文献   

16.
17.
Ac and dc receptor potential components in response to tone-burst stimuli were measured from inner hair cells in the third cochlear turn of the guinea pig. Comparisons were sought between conditions when constant polarizing current was injected into the cell through the recording electrode and when there was no extrinsic current. Hyperpolarization of the cell increased all responses, while depolarization decreased them. The input-output functions were vertically translated by current injection. The extent of translation was a function of current level. In addition, the amount of current-induced change was frequency dependent. Largest changes were seen at low frequencies and the current-induced change tended toward a constant high-frequency asymptote between 1-2 kHz. Changes in the dc response component were considerably in excess of those for the fundamental ac response. The frequency-dependent effects are quantified with the aid of a hair cell circuit model [P. Dallos, Hear. Res. 14, 281-291 (1984)]. It is assumed that the quantity altered by polarizing current (actually by the transmembrane voltage) is the resistance of the cell's basolateral membrane.  相似文献   

18.
When solving elliptic boundary value problems using integral equation methods one may need to evaluate potentials represented by a convolution of discretized layer density sources against a kernel. Standard quadrature accelerated with a fast hierarchical method for potential field evaluation gives accurate results far away from the sources. Close to the sources this is not so. Cancellation and nearly singular kernels may cause serious degradation. This paper presents a new scheme based on a mix of composite polynomial quadrature, layer density interpolation, kernel approximation, rational quadrature, high polynomial order corrected interpolation and differentiation, temporary panel mergers and splits, and a particular implementation of the GMRES solver. Criteria for which mix is fastest and most accurate in various situations are also supplied. The paper focuses on the solution of the Dirichlet problem for Laplace’s equation in the plane. In a series of examples we demonstrate the efficiency of the new scheme for interior domains and domains exterior to up to 2000 close-to-touching contours. Densities are computed and potentials are evaluated, rapidly and accurate to almost machine precision, at points that lie arbitrarily close to the boundaries.  相似文献   

19.
The low-pass voltage response of outer hair cells predicted by conventional equivalent circuit analysis would preclude the active force production at high frequencies. We have found that the band pass characteristics can be improved by introducing the piezoelectric properties of the cell wall. In contrast to the conventional analysis, the receptor potential does not tend to zero and at any frequency is greater than a limiting value. In addition, the phase shift between the transduction current and receptor potential tends to zero. The piezoelectric properties cause an additional, strain-dependent, displacement current in the cell wall. The wall strain is estimated on the basis of a model of the cell deformation in the organ of Corti. The limiting value of the receptor potential depends on the ratio of a parameter determined by the piezoelectric coefficients and the strain to the membrane capacitance. In short cells, we have found that for the low-frequency value of about 2-3 mV and the strain level of 0.1% the receptor potential can reach 0.4 mV throughout the whole frequency range. In long cells, we have found that the effect of the piezoelectric properties is much weaker. These results are consistent with major features of the cochlear amplifier.  相似文献   

20.
Optics and Spectroscopy - The synthesis of nanostructured materials took much attention due to their advanced optical and nonlinear optical properties, which can be used in various areas of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号