首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thallium(18‐crown‐6) hexafluorophosphate was prepared and its structure was determined by X‐ray diffraction analysis. The Tl+ ion is surrounded by six oxygen atoms of 18‐crown‐6 and three fluorine atoms of , forming a sandwiched structure. If the three Tl–F interactions were considered significant, the coordination number in the title compound would be nine. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A poly(dibenzo‐18‐crown‐6) was used as a new solid‐phase extraction material for the selective enrichment of phosphopeptides. Isolation of phosphopeptides was achieved based on specific ionic interactions between poly(dibenzo‐18‐crown‐6) and the phosphate group of phosphopeptides. Thus, a method was developed and optimized, including loading, washing and elution steps, for the selective enrichment of phosphopeptides. To assess this potential, tryptic digest of three proteins (α‐ casein, β‐casein and ovalbumin) was applied on poly(dibenzo‐18‐crown‐6). The nonspecific products were removed by centrifugation and washing. The spectrometric analysis was performed using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Highly selective enrichment of both mono‐ and multiphosphorylated peptides was achieved using poly(dibenzo‐18‐crown‐6) as solid‐phase extraction material with minimum interference from nonspecific compounds. Furthermore, evaluation of the efficiency of the poly(dibenzo‐18‐crown‐6) was performed by applying the digest of egg white. Finally, quantum mechanical calculations were performed to calculate the binding energies to predict the affinity between poly(dibenzo‐18‐crown‐6) and various ligands. The newly identified solid‐phase extraction material was found to be a highly efficient tool for phosphopeptide recovery from tryptic digest of proteins.  相似文献   

4.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.

  相似文献   


5.
Thermo‐sensitive amphiphilic copolymers, PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT of hydrophilic N‐vinylcaprolactam (VCL), N‐vinylpyrrolidone (NVP), and hydrophobic Nt‐Boc‐tryptophanamido‐N′‐methacryl thioureas (TrpAMT) monomers, were synthesized and characterized by 1H NMR, UV‐spectroscopy, and GPC‐MALLS. The cloud point (CP) measurement showed that hydrophobic PTrpAMT and hydrophilic PVP segments significantly altered the phase transition temperature of PVCL with comparable molecular weight in aqueous solution. The CP of PVP‐PTrpAMT solution was 38.0°C, lower by 5.0°C than that of unmodified PVCL. In the presence of phosphate buffer saline (PBS), the CP value of the PVCL polymer decreased by ~2.0°C in comparison to that of the aqueous solution. Fluorescent spectroscopy and TEM studies revealed that PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT self‐assembled into the spherical micelles, 30–70 nm in diameter, at concentrations over their CMCs in an aqueous solution. Cytotoxicity tests demonstrated that the PVCL copolymers were not harmful to cell viability, which may favor the use of the copolymers as potential thermo‐sensitive polymers in pharmaceutical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, the effect of the level of crosslinking on the properties of poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels was investigated in terms of their lower critical solution temperature (LCST), interior morphology, equilibrium swelling, and deswelling and swelling kinetics. The thermal analysis showed that PNIPAAm hydrogels, having a wide range of crosslinking levels, exhibited almost the same LCSTs, and this was different from what the conventional theory would have predicted. Scanning electron micrographs revealed that the interior network structure of the PNIPAAm matrix became more porous with an increase in the level of crosslinking. This more porous matrix provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling process and the swelling process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 582–593, 2003  相似文献   

7.
The effects of simple alkyl alcohols on the radical polymerization of N‐isopropylacrylamide in toluene at low temperatures were investigated. We succeeded in the induction of syndiotactic specificity and the acceleration of polymerization reactions at the same time by adding simple alkyl alcohols such as 3‐methyl‐3‐pentanol (3Me3PenOH) to N‐isopropylacrylamide polymerizations. The dyad syndiotacticity increased with a decrease in the temperature and an increase in the bulkiness of the added alcohol and reached up to 71% at ?60 °C in the presence of 3Me3PenOH. With the assistance of NMR analysis, it was revealed that the alcohol compounds played dual roles in this polymerization system; an alcohol compound coordinating to the N? H proton induced syndiotactic specificity, and that hydrogen‐bonded to the C?O oxygen accelerated the polymerization reaction. The effect of syndiotacticity on the properties of poly(N‐isopropylacrylamide)s was also examined in some detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4450–4460, 2006  相似文献   

8.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

9.
Anionic hydrogen‐transfer homopolymerization of N‐isopropylacrylamide (NIPAAm) was carried out using t‐BuOK as an initiator in DMF under microwave irradiation. After 100 W of microwave was irradiated to the reaction mixture at 140°C for 6 h in the temperature control mode, corresponding polymer was obtained in 10% yield. In the case of conventional oil bath heating, by contrast, corresponding polymer was not obtained in similar anionic polymerization conditions. With 100 W and 2.45 GHz of microwave irradiation, formation of the polymer was obtained. Microwave‐assisted anionic hydrogen‐transfer copolymerization of NIPPAm and acrylamide (AAm) led to the formation of thermo‐sensitive copolymers whose thermo‐sensitivity was controlled by the NIPAAm/AAm unit ratio. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2415–2419  相似文献   

10.
A new monomer derivative of N‐vinyl‐2‐caprolactam (VCL), namely 3‐(tert‐butoxycarbonylmethyl)‐N‐vinyl‐2‐caprolactam (TBMVCL), was synthesized via nucleophilic substitution at the α‐carbon to the lactam carbonyl group. The monomer was copolymerized radically with VCL and the copolymer compositions were controlled through varying the molar feeding percentages of TBMVCL. The resulting copolymers exhibited temperature‐responsive properties in water, with cloud points decreasing from 33 °C to 13 °C when the TBMVCL composition increased from 2.2 mol % to 18.6 mol %. Removal of the tert‐butyl protecting groups via acid hydrolysis exposed the carboxyl groups, which conferred pH sensitivity to the thermoresponsive properties of the resulting deprotected copolymers. The cloud point was found to increase with the increase of solution pH from 2.0 to 7.4, due to the ionization of the carboxyl groups. The influence of pH was most drastic for the 18.6 mol % copolymer composition. Furthermore, the phase transition temperature of the deprotected copolymers was found to be dependent on the polymer solution concentration, exemplifying classical Flory–Huggins miscibility behavior. Comparison of responsiveness was also made with another type of carboxyl functionalized poly(N‐vinyl‐2‐caprolactam) copolymer reported in our prior study, to examine the influence of the chemical structure of the carboxyl substitution group. Finally, the deprotected copolymer was demonstrated to be biocompatible using a fibroblast cell culture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 112–120  相似文献   

11.
12.
The differences in the polymerization abilities of N‐vinylformamide (NVF) and N‐vinylisobutyramide (NVIBA) and the synthesis of their copolymers were studied. The polymerization abilities were fairly good and quite similar to those of N‐vinyl‐ acetamide (NVA), a monomer in the same class as N‐vinylalkylamides. Since the monomer reactivity ratios were r1 = 1.08 and r2 = 0.92 (M1 = NVF, M2 = NVIBA), respectively, it is clear that the comonomers definitely were converted to random copolymers. The resulting copolymers poly(NVF‐co‐NVIBA) exhibited the cloud points sharply. The light transmittance profiles were the same as those for poly(NVIBA) although they increased from 39 °C for poly(NVIBA), with an increase in the corresponding hydrophilic NVF component. Our final objective was to produce a cloud point controlled polymer material with primary amino groups. To achieve this, we examined the hydrolysis of poly(NVF), poly(NVA), poly(NVIBA), and poly(NVF‐co‐NVIBA) to obtain poly(vinylamine) [poly(VAm)]. The hydrolytic cleavage of poly(NVF) and poly(NVA) was promoted by an increase in temperature. However, poly(NVIBA) was not cleaved appreciably. The hydrolysis of poly(NVF‐co‐NVIBA) was done under controlled conditions, and amino groups selectively were introduced to only one of two components of the copolymer. The cloud point of the hydrolyzed copolymer shifted to a higher temperature than that of the copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3674–3681, 2000  相似文献   

13.
The crystal structures and redox properties of p‐benzoquinone (BQ)‐fused [18]crown‐6 1 and bis‐BQ‐fused [18]crown‐6 2 were examined. The anion radicals of these BQ molecules were stabilized by addition of metal ions, through effective electrostatic interactions between the negatively charged BQ moiety and positively charged ion‐capturing [18]crown‐6 unit. The electrostatic interactions and solvation energy played important roles in determining the magnitudes of anodic redox shifts in the reduction potentials. Regular π‐stacking of BQ units and regular arrays of [18]crown‐6 units were observed in crystal 2 , in which one‐dimensional π‐electron columns were separated by ionic channels. The hydroquinone‐fused [18]crown‐6 molecule 3 and a new BQ‐ and phenol‐fused [18]crown‐6 derivative 4 were obtained as single crystals. The molecular conformations of [18]crown‐6 in crystal 3 and hydrated crystal 3 ?H2O were different from each other.  相似文献   

14.
A series of random copolymers of N‐isopropylacrylamide (NIPAM) and sodium 2‐acrylamido‐2‐methyl‐1‐propanesulphonate (AMPS) was synthesized by free‐radical copolymerization. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol %. The lower critical‐solution temperature (LCST) of copolymers in water increased strongly with an increasing content of AMPS. The influence of polymer concentration on the LCST of the copolymers was studied. For the copolymers with a higher AMPS content, the LCST decreased faster with an increasing concentration than for copolymers with a low content of AMPS. For a copolymer containing 1.1 mol % of AMPS the LCST dropped by about 3 °C when the concentration increased from 1 to 10 g/L, whereas for a copolymer containing 9.6 mol % of AMPS the LCST dropped by about 10 °C in the concentration range from 2 to 10 g/L. It was observed that the ionic strength of the aqueous polymer solution very strongly influences the LCST. This effect was most visible for the copolymer with the highest content of AMPS (9.6 mol %) for which an increase in the ionic strength from 0.2 to 2.0 resulted in a decrease in the LCST by about 27 °C (from 55 to 28 °C), whereas for the copolymer containing 1.1 mol % of AMPS the LCST decreased only by about 6 °C (from 37 to 31 °C) when the ionic strength increased from 0.005 to 0.3. The reactivity ratios for the AMPS and NIPAM monomer pairs were determined using different methods. The values of rAMPS and rNIPAM obtained were 11.0–11.6 and 2.1–2.4, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2784–2792, 2001  相似文献   

15.
The novel complex [K(18-C-6)]2[Cd(mnt)2][18-C-6-18-crown-6,nmt=1,2-dicyanoethene-1,2-dithiolate,C2S2-(CN)2^2-] was synthesized and characterized by elemental analysis,IR spectrum and X-ray diffraction analysis.The complex displays two-dimensional network structure of [K(18-C-6)] complex segments and [Cd(nmt)2] complex segment bridged by S-K-S,S-K-N and N-K-N interactions between adjacent[K(18-C-6)] and [Cd(mnt)2]units.  相似文献   

16.
Summary: The bis‐hydrophilic block copolymer, poly(acrylic acid)45block‐poly(N,N‐diethylacrylamide)360, was obtained after hydrolysis of poly(tert‐butyl acrylate)45block‐poly(N,N‐diethylacrylamide)360, synthesized by sequential anionic polymerization of tert‐butyl acrylate (tBA) and N,N‐diethylacrylamide (DEAAm) in the presence of Et3Al. The polymer is stimuli‐sensitive with respect to both pH and temperature in aqueous solution, reversibly forming spherical crew‐cut micelles with PDEAAm‐core (〈Rhz = 21.5 nm) under alkaline conditions for T > 35 °C as well as inverse star‐like micelles with an expanded PAA‐core (〈Rhz = 43.8 nm) under acidic conditions for T < 35 °C, as indicated by dynamic light scattering.

Modes of micelle formation for poly(acrylic acid)45block‐poly(N,N‐diethylacrylamide)360 in aqueous solution depending on the pH and temperature.  相似文献   


17.
ACE was applied to the quantitative evaluation of noncovalent binding interactions between benzo‐18‐crown‐6‐ether (B18C6) and several alkali metal ions, Li+, Na+, K+, Rb+ and Cs+, in a mixed binary solvent system, methanol–water (50/50 v/v). The apparent binding (stability) constants (Kb) of B18C6–alkali metal ion complexes in the hydro‐organic medium above were determined from the dependence of the effective electrophoretic mobility of B18C6 on the concentration of alkali metal ions in the BGE using a nonlinear regression analysis. Before regression analysis, the mobilities measured by ACE at ambient temperature and variable ionic strength of the BGE were corrected by a new procedure to the reference temperature, 25°C, and the constant ionic strength, 10 mM . In the 50% v/v methanol–water solvent system, like in pure methanol, B18C6 formed the strongest complex with potassium ion (log Kb=2.89±0.17), the weakest complex with cesium ion (log Kb=2.04±0.20), and no complexation was observed between B18C6 and the lithium ion. In the mixed methanol–water solvent system, the binding constants of the complexes above were found to be about two orders lower than in methanol and about one order higher than in water.  相似文献   

18.
Rapidly shrinking poly(N‐isopropyl acrylamide) (PNIPAM) hydrogels are prepared by crosslinking with self‐assembled nanogels that consist of cholesteryl‐ and methacryloyl‐substituted pullulan (CHPMA). The CHPMA nanogel (Rh = 26.4 nm) was used as a crosslinker for a hydrophilic nanodomain. Transmission electron microscopy images of the nanogel‐crosslinked PNIPAM hydrogel reveal a well‐defined nanoporous structure. The nanogel‐crosslinked PNIPAM hydrogel shows rapid shrinking based on its structure. The shrinking half‐time was ≈2 min, which is about 3 400 times faster than that of a PNIPAM hydrogel crosslinked by methylene(bisacrylamide).

  相似文献   


19.
20.
The antimalarial drug primaquine (PQ) and its contaminant, the positional isomer quinocide (QC) have been successfully separated using capillary electrophoresis with either β‐cyclodextrin (β‐CD) or 18‐crown‐6 ether (18C6) as chiral mobile phase additive. The interactions of the drugs with cyclodextrins and 18C6 were studied by the semiempirical method (Parametric Model 3) PM3. Theoretical calculations for the inclusion complexes of PQ and QC with α‐CD, β‐CD and 18C6 were performed. Data from the theoretical calculations are correlated and discussed with respect to the electrophoretic migration behavior. More stable complexes are predicted for the PQ–β‐CD and PQ–18C6 complexes. The coelution of PQ and QC when α‐CD was used as buffer additive can be explained by their comparable stabilities of the inclusion complex formed, while significant differences in the complexation stabilities of the drugs with β‐CD is responsible for their separation. The stronger hydrogen bonding in PQ–18C6 system is responsible for the separation between PQ and QC when 18C6 was used as chiral mobile phase additive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号