首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copolymerization system of oxetane and tetrahydropyran is reinterpreted with the aid of computer simulations. The original claim that this system is a “living” and/or controlled pseudoperiodic copolymerization 1 is not confirmed by the simulation results. It is suggested that the formation of branched oxonium cations and the statistical nature of THP incorporation are the reasons for the observed discrepancies between the simulation results and experimental data.

  相似文献   


2.
Summary: Well‐defined pentablock copolymers of styrene–[1]dimethylsilaferrocenophane–methyl methacrylate (PMMA‐b‐PFS‐b‐PS‐b‐PFS‐b‐PMMA) are synthesized using lithium naphthalide as initiator and a 1,1‐dimethylsilacyclobutane‐mediated 1,1‐diphenylethylene (DPE) end‐capping technique. Annealing under various conditions followed by analysis by transmission electron microscopy revealed good phase separation by the copolymers and the presence of ordered microstructures, such as spheres‐on/in‐spheres, and spheres‐on/in‐lamellae micromorphologies.

Structure of the styrene–[1]dimethylsilaferrocenophane–methyl methacrylate pentablock copolymers.  相似文献   


3.
Hyperbranched polythiophenes were prepared via a simple one‐pot synthesis approach based on oxidative coupling of branched conjugated monomers. Only small variations in the building unit and architecture lead to large differences of absorption and photoluminescence properties. Interestingly, soluble hyperbranched polythiophenes with relatively small molecular weights show enhanced absorption at low and high wavelengths compared to linear analogues, such as poly(3‐hexyl thiophenes) with high molecular weights. With this versatile approach we present a method to design tailor made, functional materials with potential applications in optoelectronics.

  相似文献   


4.
End group modification of polymers prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of trithiocarbonate into reactive functions able to conjugate easily with biomolecules or bioactive functionality. Polymers were prepared by RAFT, and subsequent aminolysis led to sulfhydryl‐terminated polymers that reacted in situ with an excess of dithiopyridyl disulfide to yield pyridyl disulfide‐terminated macromolecules or in the presence of ene to yield functional polymers. In the first route, the pyridyl disulfide end groups allowed coupling with oligonucleotide and peptide. The second approach exploited thiol–ene chemistry to couple polymers and model compounds such as carbohydrate and biotin with high yield.

  相似文献   


5.
6.
7.
A facile two‐step synthesis for branched poly(isoprene)s (PI) based on polyaddition of ABn‐type macromonomers is described. The synthesis of the macromonomers was achieved by anionic polymerization of isoprene and subsequent end‐capping of the polymers by addition of chlorodimethylsilane to the living carbanions. This led to PI‐based macromonomers with narrow polydispersity ( / < 1.15) and molecular weights in the range of 1 700 – 22 100 g · mol−1. Synthesis of the branched polymers was carried out by a hydrosilylation‐based polymerization of the macromonomers. Characterization via SEC, SEC‐MALLS, coupled SEC‐viscosimetry and 1H‐NMR‐spectroscopy supported the formation of branched structures. Interestingly, these branched polymers exhibited α‐values that were similar to those reported for hyperbranched polymers based on AB2‐monomers.

  相似文献   


8.
A mathematical model describing interfacial radical polymerization‐based film formation on hydrogels is elucidated. A glucose oxidase‐mediated multistage initiation reaction is used to accomplish interfacial film formation. A polymer concentration‐dependent diffusion coefficient is used to reflect the changing mass transport conditions as the film develops. Model predictions of the film thickness as a function of the species concentrations agree well with experiments. The model predicts that the degree of initiation reaction delocalization with the enzyme‐mediated initiation system is significantly higher than an enzyme‐independent system, thus affecting the film growth rate and structure. The mass transport properties of the film and its adhesion to the underlying substrate are also investigated.

  相似文献   


9.
The successful activation observed when using ButP4 phosphazene base and thiophenol or bisthiols for the anionic ring opening polymerization (ROP) of di‐n‐propyl cyclopropane‐1,1‐dicarboxylate is described. Well‐defined monofunctional or difunctional polymers with a very narrow molecular weight distribution were obtained through a living process. Quantitative end‐capping of the propagating malonate carbanion was accessible by using either an electrophilic reagent such as allyl bromide or a strong acid such as HCl. Kinetics studies demonstrated a much higher reactivity compared to the conventional route using alkali metal thiophenolates.

  相似文献   


10.
Polyaniline nanostructures (nanosheets, nanofibers, and nanoparticles) can be assembled at the organic/aqueous interface or in solution by controlling the diffusion rate and the polymerization induction time of aniline. The quality of polyaniline nanostructures is determined by the polymerization solution conditions. Polyaniline nanosheets formation mechanism was proposed. Under certain polymerization conditions, polyaniline nanofibers or/and nanoparticles were obtained.

  相似文献   


11.
A model for olefin–diene copolymerization and long chain branch formation was developed. The model shows that the number‐average molecular weight and branching density increases linearly with time in a semi‐batch polymerization, while the polydispersity depends on the diene content in the polymer and on the polymerization time. For low diene fractions or low polymerization times, the polydispersity increases linearly with time. For higher diene contents, the polydispersity increases exponentially with polymerization time after a critical polymer concentration is reached. The calculated distributions of branched species indicate that diene content influences the amount of highly branched chains produced in the polymerization, markedly broadening the distribution of molecular weight and leading to gel formation.

Weight distribution of branched species after 30 min of polymerization.  相似文献   


12.
Living anionic polymerization of tert‐butyl acrylate initiated by 1,1‐diphenylhexyllithium is conducted in a flow microreactor system in the presence of lithium chloride. A high degree of control over the molecular weight distribution is achieved under easily accessible conditions, for example at ?20 °C. The subsequent reaction of a reactive polymer chain end with an alkyl methacrylate in an integrated flow micoreactor system leads to the formation of a block copolymer with a narrow molecular weight distribution.

  相似文献   


13.
A novel synthetic method combining chemo and enzymatic synthesis strategies was employed to prepare a vinyl acetate type monomer, 6‐(4‐methoxybiphenyl‐4′‐oxy)hexyl vinyl hexanedioate (VA‐LC). Homo‐ and copolymers of VA‐LC with maleic anhydride (MAn) were prepared by conventional free radical polymerization using 2,2′‐azobisisobutyronitrile (AIBN) and 1,1′‐azobis (cyclohexane carbonitrile) (AHCN) as an initiator at 95 and 60 °C, respectively. The thermal properties of the generated polymeric material were investigated by differential scanning calorimetry (DSC), and the optical texture was inspected by polarizing optical microscopy (POM). While the monomer VA‐LC does not exhibit liquid‐crystalline properties, poly(VA‐LC), and the alternating copolymer of VA‐LC with maleic anhydride both displayed such properties.

  相似文献   


14.
The mathematical treatment of polymer modification systems, described by population balances containing convolution is discussed. The two‐dimensional case (molecular weight vs. number of branch points) was considered by utilizing approximations of distributions, expanding them in terms of Gaussian basis functions. Three branching reactions were addressed: chain backbone to chain end point coupling; three‐functional coupling of chain ends; and crosslinking. The results were compared to those of Monte Carlo (MC) simulations. Good agreement was observed, although the quality of a distribution as generated by the numerical approach is much better in view of the strong scatter in the MC data.

  相似文献   


15.
The synthesis of hyperbranched poly(ethylene glycol) (hbPEG) in one step was realized by random copolymerization of ethylene oxide and glycidol, leading to a biocompatible, amorphous material with multiple hydroxyl functionalities. A series of copolymers with moderate polydispersity ( < 1.8) was obtained with varying glycidol content (3–40 mol‐%) and molecular weights up to 49 800 g mol−1. The randomly branched structure of the copolymers was confirmed by 1H and 13C NMR spectroscopy and thermal analysis (differential scanning calorimetry). MTS assay demonstrated low cell toxicity of the hyperbranched PEG, comparable to the highly established linear PEG.

  相似文献   


16.
Summary: A new route that combines graft pre‐treatment and drawing techniques with melt mixing to prepare nanoparticle‐filled thermoplastic polymer composites is reported. Nano‐SiO2 particles are first modified by graft polymerization and then the grafted nanoparticles are melt‐compounded with poly(propylene) (PP) to produce composite filaments via drawing. Finally, the filaments are injection molded into bulk materials. Because the proposed manufacturing method is able to induce separation of the nanoparticles and the formation of beta‐crystals in the PP matrix, the resultant PP‐based nanocomposites are much tougher than the unfilled polymers, as characterized by either static or dynamic tests, in addition to showing a simultaneous increase in strength and stiffness.

Force–time curves of PP and its nanocomposites recorded during notch impact tests.  相似文献   


17.
We demonstrate the formation of highly ordered hexagonal arrays of hybridized polystyrene–poly(4‐vinyl pyridine), PS–PVP, micelles with controllable size by solvent annealing techniques. Because the formation of hybridized micelles was prohibited in the mixture solutions of two different‐sized PS–PVP micelles, single‐layered films with bimodal self‐assemblies of small and large micelles were fabricated from the mixture solutions by adjusting their mixing ratios. When the single‐layered films were solvent annealed by saturated vapor of tetrahydrofuran (THF), on the other hand, small and large PS–PVP micelles in the bimodal self‐assemblies merged together to form hybridized micelles. In addition, the hybridized micelles arranged themselves in a highly ordered hexagonal array, the diameter and center‐to‐center distance of which were precisely adjusted by varying the mixing ratio of small to large micelles in the bimodal assemblies.

  相似文献   


18.
We report a new type of step‐growth radical addition‐coupling polymerization (RACP) involving consecutive addition of carbon‐centered radical derived from α,α′‐dibromo dibasic ester to NO double bond of C‐nitroso compound followed by cross‐coupling of carbon‐centered radical and in situ formed nitroxyl radical, which produces alternating copolymers with high molecular weight and unimodal molecular weight distribution from saturated and unsaturated monomers.

  相似文献   


19.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


20.
Summary: The nitroxide‐mediated controlled/living free radical copolymerization of styrene and divinylbenzene using a polystyrene‐TEMPO macroinitiator in aqueous miniemulsion and in bulk have been investigated. The crosslink densities were estimated based on the content of pendant vinyl groups as determined by 1H NMR. Considerably lower crosslink densities were revealed in the miniemulsion than in the corresponding bulk system. The rate of polymerization in the miniemulsion increased with decreasing particle size, and was significantly higher than in bulk.

Crosslink density for the TEMPO‐mediated free radical copolymerization of S(1) and DVB(2) (f = 0.99, f = 0.01) at 125 °C in bulk (□) and in miniemulsions with dn = 585 nm (○) and 53.3 nm (•).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号