首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Plasma‐initiated controlled/living radical polymerization of methyl methacrylate (MMA) was carried out in the presence of 2‐cyanoprop‐2‐yl 1‐dithionaphthalate. Well‐defined poly(methyl methacrylate) (PMMA), with a narrow polydispersity, could be synthesized. The polymerization is proposed to occur via a RAFT mechanism. Chain‐extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA‐block‐PSt copolymer.

Dependence of ln([M]0/[M]) on post‐polymerization time (above), and \overline M _{\rm n} and PDI against conversion (below) for plasma initiated RAFT polymerization of MMA at 25 °C.  相似文献   


2.
Summary: Experimental and modeling studies of addition–fragmentation chain transfer (AFCT) during radical polymerization of methyl methacrylate in the presence of poly(methyl methacrylate) macromonomer with 2‐carbomethoxy‐2‐propenyl ω‐ends (PMMA‐CO2Me) at 60 °C are reported. The results revealed that AFCT involving PMMA‐CO2Me formed in situ during methyl methacrylate polymerization has a negligible effect on the molecular weight distribution.

  相似文献   


3.
Strong electrolyte temperature‐sensitive hydrogels were synthesized by radiation polymerization using N‐isopropylacrylamide and sodium 2‐acrylamido‐2‐methylpropanesulfonate. The influence of irradiation dose and mole ratio of the monomers was examined by swelling measurements in aqueous solution and organic solvents. The hydrogels without any pollution were applied in concentrating protein.

Effect of irradiation dose on swelling ratios of P(NIPA‐co‐NaAMPS) hydrogels.  相似文献   


4.
Summary: This communication describes a novel kind of PMMA‐PEG semi‐interpenetrating network (semi‐IPN) which shows excellent shape‐memory behavior at two transition temperatures, the Tm of the PEG crystal and the Tg of the semi‐IPN. Based on a reversible order‐disorder transition of the crystals below and above the Tm of PEG, and the large difference in storage modulus below and above the Tg of the semi‐IPN, the polymer has a recovery ratio of 91 and 99%, respectively.

Shape‐memory phenomena of PMMA‐PEG2000 semi‐IPN.  相似文献   


5.
Summary: Diblock terpolymers that consist of homopolymer and statistical copolymer (polyampholyte) building blocks are synthesized by group transfer polymerization. Two types of block tepolymers are explored in aqueous media: the amphiphilic poly{[(diethylamino)ethyl methacrylate]‐co‐(methacrylic acid)}‐block‐poly(methyl methacrylate) and the double hydrophilic poly[oligo(ethylene glycol) methacrylate]‐block‐poly{[(diethylamino)ethyl methacrylate]‐co‐(methacrylic acid)}. The first terpolymer self‐assembles in aqueous media to form responsive micelles that change their corona charge sign upon switching pH. The second terpolymer exhibits a multi‐responsive behavior. It forms neutral, positive, or negative micelles depending on a combination of different environmental conditions such as temperature, pH, and ionic strength.

P(DEAEMA‐co‐MAA)‐b‐PMMA pH‐sensitive micelles.  相似文献   


6.
Summary: The vapor‐based synthesis and characterization of a reactive polymer, poly[(4‐formyl‐p‐xylylene)‐co‐(p‐xylylene)] ( 1 ), have been reported. The reactive polymer coating enables the immobilization of oligosaccharides via the chemoselective aldehyde‐hydrazide coupling reaction.

  相似文献   


7.
A new copper catalyst containing chlorine and a photo‐labile diethylthiocarbamoylthiyl group was successfully employed in the reverse ATRP of methyl methacrylate (MMA). The polymeric chains were end‐capped with S2CNEt2, due to pseudo‐halogen atom‐transfer reaction between active and dormant species. Photopolymerization of this PMMA in the presence of fresh MMA and styrene monomers at ambient temperature yielded chain‐extended PMMA and MMA/styrene block copolymers, respectively.

GPC traces of (A) PMMA end‐capped with a photo‐labile group (pre‐PMMA), (B) chain‐extended PMMA (post‐PMMA), and (C) PMMA/styrene block copolymer (PMMA‐b‐PSt).  相似文献   


8.
Blends of polystyrene/poly(methyl methacrylate) (PS/PMMA) (30/70) prepared by simple melt mixing form a droplet (PS) in‐matrix (PMMA) morphology. It is found that addition of a carefully designed copolymer PS‐b‐P(S‐ran‐MMA) (SSM) compatibilizer could convert the morphology into a co‐continuous system. Indeed, the continuity of the dispersed PS phase increased with an increase in PS‐b‐P(S‐ran‐MMA) content, and a fully co‐continuous morphology (continuity = 100%) was obtained at 20% SSM fraction with a characteristic size of 100 nm.

  相似文献   


9.
Monodisperse poly(D ,L ‐lactide) (PDLLA) microspheres have been prepared by dispersion polymerization of D ,L ‐lactide with a synthetic polymeric stabilizer. The polymerization is carried out in xylene/heptane (1:2, v/v) at 368 K for 3 h with poly[(dodecyl methacrylate)‐co‐(2‐hydroxyethyl methacrylate)] (P(DMA‐co‐HEMA)). P(DMA‐co‐HEMA) has hydroxy groups as an initiation group for pseudoanionic dispersion polymerization. The particle diameter and the coefficient of variation concerning the diameter distribution of the obtained PDLLA microspheres are 3.9 µm and 4.3%, respectively. In addition, from the results of dynamic light scattering measurements, it is found that P(DMA‐co‐HEMA) and the PDLLA‐grafted copolymer form a micellar structure in solution.

  相似文献   


10.
Summary: A highly active and versatile CuBr2/N,N,N′,N′‐tetra[(2‐pyridal)methyl]ethylenediamine (CuBr2/TPEN)‐tertiary amine catalyst system has been developed for atom transfer radical polymerization via activator‐generated‐by‐electron‐transfer (AGET ATRP). The catalyst mediates good control of the AGET ATRPs of methyl acrylate, methyl methacrylate, and styrene at 1 mol‐% catalyst relative to initiator. A mechanism study shows that tertiary amines such as triethylamine reduces the CuBr2/TPEN complex to CuBr/TPEN.

The GPC traces of PSt, PMA, and PMMA prepared by AGET ATRP at 1 mol‐% of catalyst relative to initiator are monomodal and have low polydispersities.  相似文献   


11.
Summary: Thermosensitive polymer nanotubes can be fabricated within an aminopropylsilane‐modified porous anodic aluminum oxide membrane by surface‐initiated atom transfer radical polymerization (ATRP) followed by template removal. DSC experiments prove that the synthesized PNIPAM‐co‐MBAA copolymer nanotubes have a reversible thermosensitive behavior. The temperature‐induced changes in dimension and shape of the nanotubes were studied by AFM in real time in an aqueous environment. It indicates that the nanotubes undergo a shape alteration from an “ellipse” to “circular” shape in water upon heating to LCST or above.

DSC curves of PNIPAM‐co‐MBAA nanotubes.  相似文献   


12.
Properties characteristic of the size, shape, and orientation as well as the rigidity of PMMA end‐grafted to an amorphous silica surface are calculated by use of fully atomistic molecular dynamics simulations with MMA as explicit solvent. Both the number of grafted chains and their tacticity is varied. Firstly, properties of one atactic end‐grafted chain are compared to those of the same chain without any surface being present. Secondly one, two, and four atactic grafted chains are evaluated to study the influence of grafting density (at low surface occupancy) and thirdly, results of single grafted iso‐, syndio‐, and atactic chains, respectively, are compared to elucidate the influence of tacticity. Additionally, the used force field is validated by calculation of the diffusion coefficient of solvent molecules.

  相似文献   


13.
A versatile approach to fabricate monodisperse poly[styrene‐co‐(divinyl benzene)] (PS‐co‐DVB) microcapsules that contain a single gold nanoparticle (AuNP) has been demonstrated. Using the PS‐co‐DVB microcapsule as a microreactor, aqueous HAuCl4 and NaBH4 solutions are subsequently infiltrated. The size of the resulting AuNP inside of the PS‐co‐DVB microcapsules is easily tunable by controlling the repeated infiltration cycles of aqueous HAuCl4 and NaBH4. PS‐co‐DVB microcapsules that contain a single silver and palladium nanoparticle are also obtained by following a similar protocol.

  相似文献   


14.
A novel tetradentate amine ligand namely N,N,N′,N″,N‴;,N‴;‐hexaoligo(ethylene glycol) triethylenetetramine (HOEGTETA) was employed in the homogenous ATRP of MMA in anisole using CuBr and CuBr2 as the catalyst and ethyl 2‐bromoisobutyrate (EBiB) as an initiator. The effect of the polymerization temperature and the various ratios of Cu(I) to Cu(II) were investigated in detail. Moreover, we demonstrated the ATRP of MMA by using only Cu(II) in the absence of any free radical initiator, reducing agent, or air. The ATRP of MMA with the use of only Cu(II) and HOEGTETA or N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) resulted in well‐defined PMMA.

  相似文献   


15.
Summary: The interactions between poly{(2,6‐pyridinylenevinylene)‐co‐[(2,5‐dioctyloxy‐p‐phenylene)vinylene]} (PPyPV) and SWNTs have been investigated using UV‐Vis absorption spectroscopy. The SWNTs promoted polymer organization. PPyPV is a Lewis base and can be doped by strong and weak Lewis acids. The basicity strength of the PPyPV depended on the polymer interchain interactions, which were enhanced by the presence of SWNTs. As the SWNT concentration was increased, an increment in the Kb of PPyPV was observed.

  相似文献   


16.
Graft copolymers of bacterial polyesters were prepared by direct condensation of poly(3‐hydroxyoctanoate‐co‐9‐carboxy‐3‐hydroxydecanoate) (PHOD) and poly(ethylene glycol) (PEG) or poly(lactic acid) (PLA). Nanoparticles from PHO, PHOD, PHOD‐g‐PEG, and PHOD‐g‐PLA were obtained by solvent displacement without stabilizer, and their stability in different aqueous media with different salt concentrations were studied. The results showed that the presence of hydrophilic PEG on the particle surface prevents the aggregation promotion by salts in aqueous solution. PHOD‐g‐PEG appears to be a promising candidate for site‐specific drug delivery systems.

1H NMR spectrum of PHOD‐g‐PLA in CDCl3.  相似文献   


17.
High solids content film‐forming poly[styrene‐co‐(n‐butyl acrylate)] [poly(Sty‐co‐BuA)] latexes armored with Laponite clay platelets have been synthesized by soap‐free emulsion copolymerization of styrene and n‐butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylate‐terminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo‐transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.

  相似文献   


18.
Interaction chromatography has been employed to validate that adsorption of poly[styrene‐co‐(4‐bromostyrene)] (PBrxS) random copolymers, where x denotes the mole fraction of 4‐bromostyrene (4–BrS) in PBrxS in solution depends on the average number of adsorptive segments, the type of adsorbing substrate, and on the co‐monomer sequence distribution in PBrxS.

  相似文献   


19.
A series of novel pH‐ and temperature‐responsive diblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly[(L ‐glutamic acid)‐co‐(γ‐benzyl L ‐glutamate)] [P(GA‐co‐BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA‐co‐BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region. Notably, when the BLG content in P(GA‐co‐BLG) block was more than 30 mol.‐%, the diblock copolymer responded sharply to a narrow pH change in the region of pH 7.4–5.5.

  相似文献   


20.
Acrylamide and acrylic acid are grafted on graphene by free‐radical polymerization to produce a series of graphene–poly(acrylamide‐co‐acrylic acid) hybrid materials with different contents of graphene. The materials demonstrate shape memory effect and self‐healing ability when the content of graphene is in the range of 10%–30% even though poly(acrylamide‐co‐acrylic acid) itself had poor shape memory ability. The permanent shape of the materials can be recovered well after 20 cycles of cut and self‐healing. The result is attributed to the hard–soft design that can combine nonreversible “cross‐link” by grafting copolymer on graphene and reversible “cross‐link” utilizing the “zipper effect” of poly(acrylamide‐co‐acrylic acid) to form or dissociate the hydrogen‐bond network stimulated by external heating.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号