首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: New polymer gelators consisting of poly(propylene glycol) or poly(ethylene glycol) and L ‐lysine‐based low‐molecular‐weight gelators have been developed. These polymer gelators were synthesized according to a simple procedure with high reaction yield, and formed organogels in many organic solvents. The organogelation mechanism was proposed from the transmission electron microscopy and FTIR spectroscopy studies.

Structures of the polymer gelators synthesized here.  相似文献   


2.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

3.
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.

Ring‐opening polymerization of L (D )‐lactide in the presence of dihydroxyl PEG using zinc powder as catalyst.  相似文献   


4.
Well‐defined diblock copolymers, poly(ethylene glycol)‐block‐poly(glycidyl methacrylate)s (PEG‐b‐PGMAs), with different poly(glycidyl methacrylate) (PGMA) chains, were prepared via atom transfer radical polymerization (ATRP) from the same macromolecular initiator 2‐bromoisobutyryl‐terminated poly(ethylene glycol) (PEG). Ethyldiamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and polyethyleneimine (PEI) with an of 400 (PEI400) were used to decorate PEG‐b‐PGMAs to get the cationic polymers PEG‐b‐PGMA‐ oligoamines. These cationic polymers possessed high buffer capability and could condense plasmid DNA (pDNA) into nanoscaled complexes of 125–530 nm. These complexes showed the positive zeta potential of 20–35 mV at N/P ratios of 10–50. Most of them exhibited very low cytotoxicity and good transfection efficiency in 293T cells. The presence of the serum medium did not decrease the transfection efficiency due to the steric stabilization of the PEG chains.

  相似文献   


5.
Summary: A methacrylate‐functionalized poly(ethylene glycol) macromonomer was copolymerized at the surface of methacrylate‐derivatized maghemite nanoparticles. After silylation of the magnetic core with methacryloxypropyltrimethoxysilane, two grafting procedures based on either a direct copolymerization reaction in water or an inverse emulsion polymerization were compared. A direct copolymerization led to low polymer surface amounts, whereas an inverse emulsion process allowed nanocomposite particles containing up to 90 wt.‐% polymer to be obtained.

TEM picture of maghemite‐PEG hybrid particles.  相似文献   


6.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

7.
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007  相似文献   

9.
PEG was grafted onto chitosan regioselectively at the hydroxyl groups with phthaloylchitosan as an intermediate. After the graft reaction, the phthaloyl groups were deprotected to give chitosan-g-PEG copolymers with free amino groups. The chemical structure of the graft copolymers was confirmed by FT-IR, (1)H and (13)C NMR spectroscopy. The resulting graft copolymers showed improved thermal stability compared to the original chitosan, and showed a lower thermal transition temperature at around 185 degrees C. Chitosan-g-PEG exhibited a high affinity not only for aqueous acid but also for some organic solvents because of the presence of abundant free amino groups and PEG branches, and it exhibited higher hygroscopicity and moisture retention ability than chitosan. [structure: see text]  相似文献   

10.
In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf‐PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and defined with state‐of‐the‐art characterization techniques—for example real‐time 1H NMR spectroscopy monitoring of the EO polymerization kinetics—this emerging class of polymers embodies a powerful platform for bio‐ and drug conjugation.  相似文献   

11.
A kinetic model for the graft polymerization of VAc from PEG was developed using the method of moments. Experiments were carried out to verify the model. The effect of various parameters, such as initiator concentration, temperature, and PEG molecular weight on the polymerization kinetics was examined. Polymerization rate, grafting efficiency, graft copolymer molecular weight, and PEG grafted ratio were measured. The model was in good agreement with the experimental data. No gel effect was observed at the studied PEG/VAc weight ratio of 1:1. The chain transfer constant to PEG was correlated to be . The model was also applied in a semi‐batch reaction and compared with the experimental results.

  相似文献   


12.
聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物的降解性能   总被引:12,自引:3,他引:12  
以辛酸亚锡为引发剂,聚乙二醇大分子为共引发剂进行现交酯开环聚合,制备了系列聚乳酸(PLA)-聚乙二醇(PEG)-聚乳酸(PLA)三嵌段共聚物。从共聚物在生理盐水 中降解时特性粘度[η],质量和热行为的变化,考察了PEG分子量和丙交酯/PEG(摩尔比)对共聚物降解行为的影响,结果表明,PEG嵌段对共聚物的降解速率有重要影响,丙交酯/PEG一定时,PEG分子量越大,共聚物越容易降解,PEG嵌段长度一定时,丙交酯/PEG越大,共聚物降解速率越小。  相似文献   

13.
14.
Comb-shaped amphiphilic graft copolymers composed of hydrophobic backbones and hydrophilic side chains were prepared by radical copolymerization of poly(ethylene glycol) monomethacrylate macromonomers, and methacrylate and acrylate comonomers in toluene. The copolymerizations were very sensitive to the reaction conditions, and insoluble cross-linked gels were easily formed. The yields of soluble copolymers were affected by the initiator concentration, the macromonomer concentration, and the choice of chain transfer agents and comonomers. Solubilities of the copolymers in water or methanol were found to depend on the sizes and the numbers of the PEG side chains. The copolymers showed surface activity with CMC:s in the order of 0.1–1.5 g/L and surface tensions of 36–56 dyn/cm. When tested as emulsifiers most of the copolymers gave oil-in-water type emulsions at room temperature. Polymers carrying MPEG 2000 side chains were crystalline with melting points of 38–44°C, while those based on PEG 400 and 1000 were mostly amorphous with glass transition temperatures between -55 and -60°C. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

16.
Poly(ethylene glycol) (PEG) blends photo-curable and thermal activated shape-memory polymers (SMPs), with different activation temperature (Tswitch), have been synthesized and characterized. PEG blends with different molecular weights were chain-end functionalized with isocyanate ethyl methacrylate and photo-cured with UV lamp. Degree of cross-linking of the blend network, determined by gel content measurement, resulted as higher than 95%. The thermal and thermomechanical properties of these SMPs PEG blends were characterized by differential scanning calorimetry and dynamic mechanical analysis. The shape-memory properties of the networks were quantified using thermomechanical three-point bending experiments and showed strain fixity rates higher than 99% and a minimum strain recovery ratio of 82%.  相似文献   

17.
Poly(ethylene glycol) (PEG) is often used to biocompatibilize surfaces of implantable biomedical devices. Here, block copolymers consisting of PEG and l ‐cysteine‐containing poly(amino acid)s (PAA's) were synthesized as polymeric multianchor systems for the covalent attachment to gold surfaces or surfaces decorated with gold nanoparticles. Amino‐terminated PEG was used as macroinitiator in the ring‐opening polymerization, (ROP), of respective amino acid N‐carboxyanhydrides (NCA's) of l ‐cysteine (l ‐Cys), l ‐glutamate (l ‐Glu), and l ‐lysine (l ‐Lys). The resulting block copolymers formed either diblock copolymers, PEG‐b‐p(l ‐Gluxcol ‐Cysy) or triblock copolymers, PEG‐b‐p(l ‐Glu)xb‐p(l ‐Cys)y. The monomer feed ratio matches the actual copolymer composition, which, together with high yields and a low polydispersity, indicates that the NCA ROP follows a living mechanism. The l ‐Cys repeat units act as anchors to the gold surface or the gold nanoparticles and the l ‐Glu repeat units act as spacers for the reactive l ‐Cys units. Surface analysis by atomic force microscopy revealed that all block copolymers formed homogenous and pin‐hole free surface coatings and the phase separation of mutually immiscible PEG and PAA blocks was observed. A different concept for the biocompatibilization of surfaces was followed when thiol‐terminated p(l ‐Lys) homopolymer was first grafted to the surface and then covalently decorated with HOOC‐CH2‐PEG‐b‐p(Bz‐l ‐Glu) polymeric micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 248–257  相似文献   

18.
用1H NMR, SEC, XRD和DSC对聚乳酸(PLLA)-聚乙二醇(PEG)二嵌段共聚物进行了表征. 由于共聚物中两种组分比例的不同, 表现出某组分单独结晶或两种组分共同结晶. 用DSC和POM方法, 对两组分含量相当的共聚物进行了熔体结晶行为研究, 并采用Avrami方程进行了结晶动力学计算. 用Lauritzen-Hoffmann理论对PLLA-PEG结晶机理进行了分析. 在70~94 ℃范围内, 得到成核参数Kg(POM)=5.23×105 K2. 共聚物的Kg和链折叠自由能σe都比均聚物的文献报道值高, 表明PEG链段的存在影响了PLLA的结晶, 使得其成核较均聚物困难.  相似文献   

19.
20.
介绍了通过1,3-偶极环加成合成2,5-二取代异噁唑啉衍生物的液相合成方法, 利用聚乙二醇(PEG)支持的烯烃与由醛肟制得的腈氧化物反应制备了多种异噁唑啉衍生物, PEG解脱后产物的产率和纯度均很高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号