首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel helical poly(macromonomer) [poly(M‐PS): absolute = 82 800–252 000, determined by GPC/RALLS] with a polyacetylene main chain and polystyrene (PS) side chains was synthesized by the polymerization of acetylene‐terminated M‐PS [ = 2 000, / = 1.20, = 18] with an Rh catalyst. M‐PS was prepared by ATRP of styrene using the acetylene‐containing initiator 2‐bromo‐2‐methylpropionic acid (S)‐1‐methylpropargyl ester ( l ). In solutions, poly(M‐PS) exhibited an intense CD signal at 345–355 nm, indicating that it possessed a predominantly one‐handed helical conformation. Poly(M‐PS) had a stable helical conformation irrespective of solvents and temperature.

  相似文献   


2.
Summary: Amphiphilic hyperbranched polyester (H20‐AM) with methacrylate end groups was synthesized based on hyperbranched aliphatic polyester (Boltorn™ H20). Narrow‐dispersed crosslinkable vesicles were obtained by dissolving H20‐AM in water, and characterized by laser light scattering and TEM. The hollow structural vesicle is composed of around 350 H20‐AM molecules, having a radius of around 40 nm and of 1.9 × 106 g · mL−1. The vesicles were fixed by crosslinking of methacrylate groups to form shape‐persistent structures.

TEM images of the crosslinked vesicles at lower magnification.  相似文献   


3.
Summary: The recently developed initiation system, activators generated by electron transfer (AGET), is used in atom transfer radical polymerization (ATRP) in the presence of a limited amount of air. Ascorbic acid and tin(II ) 2‐ethylhexanoate are used as reducing agents in miniemulsion and bulk, respectively. An excess of reducing agent consumes the oxygen present in the system and, therefore, provides a deoxygenated environment for ATRP. ATRP of butyl acrylate is successfully carried out in miniemulsion and in the presence of air. During polymerization the radical concentration remains constant. The polymerization reaches over 60% monomer conversion after 6 h, which results in polymers with a predetermined molecular weight = 14 000 g · mol−1 and a low polydispersity ( = 1.23). AGET ATRP of styrene is also successful in bulk in the presence of air, as evidenced by linear semi‐logarithmic kinetics, which leads to polystyrene with an of 13 400 g · mol−1 and a low polydispersity index ( = 1.14).

Appearance of miniemulsion before and after the reducing agent ascorbic acid was added (left); and GPC traces representing molecular weights during the AGET ATRP of BA in miniemulsion in the presence of air (right).  相似文献   


4.
Summary: A computer simulation model is proposed to study film growth and surface roughness in aqueous (A) solution of hydrophobic (H) and hydrophilic (P) groups on a simple three dimensional lattice of size with an adsorbing substrate. Each group is represented by a particle with appropriate characteristics occupying a unit cube (i.e., eight sites). The Metropolis algorithm is used to move each particle stochastically. The aqueous constituents are allowed to evaporate while the concentration of H and P is constant. Reactions proceed from the substrate and bonded particles can hop within a fluctuating bond length. The film thickness ( ) and its interface width ( ) are examined for hardcore and interacting particles for a range of temperature ( ). Simulation data show a rapid increase in and followed by its non‐monotonic growth and decay before reaching steady‐state and near equilibrium ( ) in asymptotic time step limit. The growth can be described by power laws, e.g., with a typical value of in initial time regime followed by at . For hardcore system, the equilibrium film thickness ( ) and surface roughness ( ) seem to scale linearly with the temperature, i.e., at low and at higher . For interacting functional groups in contrast, the long time (unsaturated) film thickness and surface roughness, and decay rapidly followed by a slow increase on raising the temperature.

Growth of the average film thickness at a temperature .  相似文献   


5.
Adhesion of immiscible polymers during two‐component injection moulding may be improved by transreactions of properly functionalised components. We performed MC simulations based on the three‐dimensional coarse‐grained bond fluctuation model (BFM) including a thermal interaction potential in with energy to characterise the behaviour of several selected types of chemical reactions, which are governed by activation energies of EA = 0, 1, 3 and 5 kBT. The consumption of reactive monomers for all the reactions in the time interval below the Rouse time τR exhibits a typical crossover from a kinetic‐controlled to a diffusion‐controlled behaviour and can be described by a bimolecular kinetic ansatz.

  相似文献   


6.
A series of random copolymers and block copolymers containing water‐soluble 4AM and fluorescent VAK are synthesized by NMP. The homopolymerizations of 4AM and VAK and 4AM/VAK random copolymerization are performed in 50 wt% DMF using 10 mol% SG1, resulting in a linear increase in versus conversion, and final polymers with narrow molecular weight distributions ( < 1.4). Reactivity ratios rVAK = 0.64 ± 0.52 and r4AM = 0.86 ± 0.66 are obtained for the 4AM/VAK random copolymerization. In addition, a poly(4AM) macroinitiator is used to initiate a surfactant‐free suspension polymerization of VAK. After 2.5 h, the resulting amphiphilic block copolymer has = 12.6 kg · mol?1, = 1.48, molar composition FVAK = 0.38 with latex particle sizes between 270 and 475 nm.

  相似文献   


7.
Summary: A water‐soluble gold nanoparticle aggregate 2 was prepared by chloroauric acid and a polypseudorotaxane 1 of mono‐6‐thio‐β‐cyclodextrin with poly(propylene glycol) bis(2‐aminopropyl ether) ( ≈ 2 000) in the presence of sodium borohydride in N,N‐dimethylformamide (DMF) solution. The investigative results indicated that the gold nanoparticle aggregate 2 might act as an efficient DNA‐cleavage reagent.

A typical TEM image of gold nanoparticle aggregate 2 .  相似文献   


8.
Summary: We developed a facile approach to hyperbranched polymers by applying a superelectrophilic reaction within an A2 + B3 strategy. A significant reactivity difference between the intermediate and the starting material was utilized to avoid gelation in the A2 + B3 polymerization. A number of hyperbranched poly(arylene oxindole)s were achieved in a one‐step polymerization and characterized by NMR spectroscopy and gel permeation chromatography. Moreover, further modifications at the interior and exterior of the resulting polymers were explored as well.

Structure of the hyperbranched polymers produced using the A2 + B3 approach.  相似文献   


9.
Summary: The polymerization of ε‐caprolactone (CL) in the presence of HCl · Et2O by an activated monomer mechanism was performed to synthesize diblock or triblock copolymers composed of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL). The obtained PCLs had molecular weights close to the theoretical values calculated from the CL to PEG molar ratios and exibited monomodal GPC curves. We successfully prepared PEG and PCL block copolymers by a metal‐free method.

The non‐metal catalyzed living ring‐opening polymerisation of ε‐caprolactone by PEG.  相似文献   


10.
Fluorescent image patterns of a substituted acetylene polymer film with a large FFV were successfully obtained by a µCP method using several kinds of chemical ink compounds. PO and SCA generated positive‐type fluorescent image patterns. On the other hand, an ethanolic solution of DNT generated a negative‐type fluorescent image pattern due to a significant quenching effect. An NMP solution of NR gave a two‐color image pattern due to an intermolecular energy transfer from PTMSDPA to NR.

  相似文献   


11.
A facile two‐step synthesis for branched poly(isoprene)s (PI) based on polyaddition of ABn‐type macromonomers is described. The synthesis of the macromonomers was achieved by anionic polymerization of isoprene and subsequent end‐capping of the polymers by addition of chlorodimethylsilane to the living carbanions. This led to PI‐based macromonomers with narrow polydispersity ( / < 1.15) and molecular weights in the range of 1 700 – 22 100 g · mol−1. Synthesis of the branched polymers was carried out by a hydrosilylation‐based polymerization of the macromonomers. Characterization via SEC, SEC‐MALLS, coupled SEC‐viscosimetry and 1H‐NMR‐spectroscopy supported the formation of branched structures. Interestingly, these branched polymers exhibited α‐values that were similar to those reported for hyperbranched polymers based on AB2‐monomers.

  相似文献   


12.
Summary: Organisation behaviours of spherical particles suspended in sheared, lyotropic, liquid‐crystalline polymer solutions have been investigated using polarizing optical microscopy. We find that in a nematic phase the particles phase separate and adopt anisotropic chain‐like structures along the director. An earring defect is observed around a single particle whereas a cross or strings defect between neighbouring particles is found to serve as a repulsive barrier to prevent the particles from contacting each other. A theoretical analysis is presented to explain this new phenomenon.

An optical micrograph of 0.01 wt.‐% glass spheres suspended in a nematic solution of 40 wt.‐% ethyl cellulose in chloroform under an external shear force.  相似文献   


13.
The synthesis of hyperbranched poly(ethylene glycol) (hbPEG) in one step was realized by random copolymerization of ethylene oxide and glycidol, leading to a biocompatible, amorphous material with multiple hydroxyl functionalities. A series of copolymers with moderate polydispersity ( < 1.8) was obtained with varying glycidol content (3–40 mol‐%) and molecular weights up to 49 800 g mol−1. The randomly branched structure of the copolymers was confirmed by 1H and 13C NMR spectroscopy and thermal analysis (differential scanning calorimetry). MTS assay demonstrated low cell toxicity of the hyperbranched PEG, comparable to the highly established linear PEG.

  相似文献   


14.
Self‐assembling systems based on ionic complexes of DNA fragments (36 base pairs), bcl‐2 antisense oligonucleotides (octadecamer), oligophosphates (25 phosphate groups) or acrylic oligomers (18 groups of phosphonic acid) with poly(L ‐lysine) (PLL) ( = 130 000 and 88 000) grafted with short poly[N‐(2‐hydroxypropyl)methacrylamide] (PHPMA) chains ( = 4 300 or 8 600) were studied by static and dynamic light scattering methods as systems suitable for gene therapy applications. The graft copolymers (GPLLs) with shorter PHPMA grafts ( = 4 300) provide polyelectrolyte complexes (PECs) with smaller and RH than the corresponding GPLLs with longer grafts ( = 8 600) and the same content of PLL. The lowest aggregation number of 2 was observed for PECs prepared from the GPLL with short grafts and 40 wt.‐% of PLL. The complexes of oligonucleotides and DNA fragments with GPLLs showed quite similar behavior to that with oligophosphates and acrylic oligomer. The complexes prepared from GPLLs containing 40 wt.‐% of PLL and at excess of oligophosphate were stable for at least 48 h under physiological conditions (0.15 M NaCl) and in bovine serum albumin solutions (1 mg · mL?1). Additionally, polyanion exchange reactions of the PECs in contact with poly(styrenesulfonate) and DNA were studied in 0.15 M NaCl solutions. The oligophosphates in complexes were at least partially substituted with high‐molecular‐weight polyanions. The structure of the initial PECs dominated the PEC structure after the exchange reaction.

The dependence of the molecular weight (a) and the hydrodynamic radius RH (b) of complexes of the oligophosphate (OPP) and four graft copolymers (GPLLi, i = 0–3) on the mixing ratio X.  相似文献   


15.
An experimental investigation of the kinetics of cationic polymerization of β‐pinene was performed using two different initiator systems under two different operating conditions (shot additions of initiator, and continuous feeding of monomer). The experiments were done using calorimetric measurements under isoperibolic conditions. The heat of polymerization of β‐pinene was found to be ?30.6 kcal · mol?1. A simple kinetic model was tentatively proposed, and the model fit reasonably well to the different experimental runs. Different values of the fitting parameters were obtained for runs carried out under different conditions, which can probably be ascribed to the presence of adventitious impurities in the commercial‐grade monomer used.

  相似文献   


16.
The efficient formation of low polydispersity core cross‐linked star (CCS) polymers via controlled/living radical polymerization (LRP) and the arm‐first approach was found to be dependant on the mediating catalyst system. The Ru catalyst, Ru(Ind)Cl(PPh3)2 Cat. 1 , and tertiary amine co‐catalyst were used to synthesize highly living poly(methyl methacrylate) (PMMA) macroinitiators, which were then linked together with ethylene glycol dimethacrylate (EGDMA) to form PMMAarmPEGDMAcore CCS polymers. The quantitative and near‐quantitative synthesis of CCS polymers were observed for low to moderate molecular weight macroinitiators ( = 8 and 20 kDa), respectively. Lower conversions were observed for high‐molecular weight macroinitiators ( ≥ 60 kDa). Overall, an improvement of between 10 and 20% was observed when comparing the Cat. 1 system to a conventional Cu‐catalyzed system. This significant improvement in macroinitiator‐to‐star conversion is explained in the context of catalyst system selection and CCS polymer formation.

  相似文献   


17.
Enzyme assays are receiving more and more research and application interest because of the rapidly increasing demands of clinical diagnosis, environmental analysis, drug discovery, and molecular biology. Water‐soluble light‐harvesting conjugated polymers (CPs) coordinate the action of a large number of absorbing units to afford an amplified fluorescence signal, which makes them useful as optical platforms in highly sensitive chemical and biological sensors. This Feature Article highlights recent developments of water‐soluble CPs for fluorescent assays of enzymes. Different signal transduction mechanisms, such as electron transfer, fluorescence resonance energy transfer (FRET), and aggregation or conformation changes of CPs, are employed in these assays according to the dissimilar nature of enzymes. Potential challenges and future research directions in these approaches based on CPs are also discussed.

  相似文献   


18.
Summary: Oligo(acrylic acid)s, produced by RAFT polymerization, have been separated and analyzed for the first time by capillary zone electrophoresis. The resolution obtained by capillary electrophoresis in borate buffers is far higher than that currently achieved using size exclusion chromatography. This work demonstrates that capillary electrophoresis is the technique of choice for the characterization of oligomers of acrylic acid and of other water‐soluble monomers involved in emulsion polymerization processes.

Electropherograms of different acrylic acid (AA) oligomers obtained by CZE.  相似文献   


19.
The synthesis and polymerization of novel diallyldimethylammonium ionic liquid monomers is described. A free‐radical polymerization follows a ring‐closing cyclopolymerization mechanism similar to the one observed previously for diallyldimethylammonium halides that leads to pyrrolidinium functional polymers. As previously observed in other families of polymeric ionic liquids, their physico‐chemical properties are seriously affected by the nature of the counter‐anion. As an example, the thermal stability increases following the trend SCN < < < bis(trifluoromethane)sulfonamide. Interestingly, this polymerization route may lead to the synthesis of a new family of random copolymers that have a similar poly(diallyldimethylammonium) backbone and a mixture of counter‐anions determined by the comonomer selection.

  相似文献   


20.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) of styrene. A series of hydroxyl‐terminated polymethylenes (PM‐OHs) with different molecular weight and narrow molecular weight distribution were prepared using living polymerization of ylides following efficient oxidation in a quantitive functionality. Then, the macroinitiators (PM‐MIs ( = 1 900–15 000; PDI = 1.12–1.23)) transformed from PM‐OHs in ≈ 100% conversion initiated ATRPs of styrene to construct PM‐b‐PS copolymers. The GPC traces indicated the successful extension of PS segment ( of PM‐b‐PS = 5 000–41 800; PDI = 1.08–1.23). Such copolymers were characterized by 1H NMR and DSC.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号