首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The conversion of black oil in hydrogen (hydroconversion) and nitrogen (pyrolysis) media was studied. The influence of the hydrogen pressure and temperature of the hydrotreating of black oil on the yield and properties of the resulting liquid hydrocarbons was examined. Hydrogen actively participates in the conversion of kerogen (major organic component of black oil), which leads to an increase in the conversion of the organic matter, to an increase in the yield of liquid hydrocarbon products, and to improvement of their quality, compared to pyrolysis. The highest conversion of organic carbon (91.7%) and the maximal yield of liquid hydrocarbons (30.7 wt %) were reached in a hydrogen medium at a pressure of 10.0 MPa and a temperature of 400°C.  相似文献   

2.
为深入了解高硫石油焦在工业应用高温工况下的热解过程以及硫的析出特性,本研究采用高温固定床对青岛高硫石油焦进行了高温(900-1500℃)热解实验,考察了高温热解下热解气体释放规律,热解过程中焦的物理孔隙结构以及化学特性的演变,并对热解过程中硫的析出与演变特性进行了研究。结果表明,随着热解温度的升高,石油焦热解气中的H2含量逐渐增加,CO含量变化不大,CH4与CO2含量则逐渐下降;热解焦的比表面积与平均孔隙均随热解温度的升高有所增加,颗粒的表面形态则受温度影响较小;热解温度的升高会降低石油焦中含有的非定型碳比例,提高其微晶结构的有序性以及石墨化程度;热解焦的气化活性随热解温度的升高先降低后升高,在1100℃附近有最小值; 1500℃高硫石油焦硫元素析出率达81.34%,仅少量硫醇类有机硫和噻吩环内的硫元素得以残存。  相似文献   

3.
采用SiC纳米粉体与聚碳硅烷(PCS)为原料低压成型低温烧结制备SiC纳米多孔陶瓷,研究了PCS含量对烧成纳米多孔陶瓷性能的影响。SEM和AFM微观形貌分析表明,PCS裂解产物将SiC纳米颗粒粘结起来,烧成陶瓷内部有大量的纳米孔存在。烧成SiC纳米多孔陶瓷孔径分布呈单峰分布、孔径分布范围窄,随着PCS含量的增大烧成多孔陶瓷强度增大,但孔隙率降低、烧结过程中坯体尺寸线收缩率增大。PCS含量为20wt%时三点弯折强度为36.8MPa,孔隙率为39.5%,平均孔径为49.3 nm。  相似文献   

4.
碳前驱体CH3ArCH2NH2的热解性能及动力学研究   总被引:3,自引:1,他引:2  
通过密闭压力容器法、常压DSC、高压DSC及紫外分光光度定量分析法等实验手段,对液相沉积法制碳/碳复合材料用碳前驱体CH3ArCH2NH2的热裂解行为进行了研究,获得不同温度、不同压力下该碳前驱体的热分解温度和残碳率,用等温动力学和非等温动力学方法获得了热裂解反应的表观活化能,实验结果表明,常压热裂解温度大约为530.15-556.55K,1-3MPa的高压范围内的热裂解温度大约在618.34-675.49K,密闭压力容器中的残碳率为56.23%,常压下的残碳率为28.96%-36.47%,而高压下残碳率可达59.11%,根据基辛格等方法获得了等温条件下和非等温条件下热裂解反应的表观活化能Ea分别为206.78kJ/mol和183.93kJ/mol, 反应级数N~1.  相似文献   

5.
甲苯热解机理的AM1研究(Ⅰ)热力学分析   总被引:2,自引:0,他引:2  
在实验的基础上,本文用Gaussian98程序包中AM1法UHF计算,对碳材料用碳前驱体甲苯的热裂解反应机理进行了研究。在对反应物,产物自由基的结构进行能量梯度法全优化的同时,计算了不同温度下的标准热力学参数(298-1073K)。热力学计算结果表明:(1)当甲苯的热裂解温度相对较低时(773K左右),热力学计算结果首先支持苯环上甲基C-H键的断裂生成苯基自由基并继而生成联二甲苯的反应;随着温度的提高(达1073K时),生成苯自由基和甲基自由基的反应比例将大生成苄基自由基的比例;该反应机理与实验结果基本一致。(2)采用Gaussian98程序包中AM1法中的UHF计算,较适合低级芳香烃热裂解反应机理的理论研究。  相似文献   

6.
Technology designed to capture and store carbon dioxide (CO2) will play a significant role in the near-term reduction of CO2 emissions and is considered necessary to slow global warming. Nanoporous carbon (NPC) membranes show promise as a new generation of gas separation membranes suitable for CO2 capture.We have made supported NPC membranes from polyfurfuryl alcohol (PFA) at various pyrolysis temperatures. Positron annihilation lifetime spectrometry (PALS) and wide angle X-ray diffraction (WAXD) results indicate that the pore size decreases whilst the porosity increases with increasing pyrolysis temperature. The membrane performance results support these findings with a significant increase in permeance being seen with increasing pyrolysis temperature, which relates to the increase in porosity.Mixed gas performance measurements also show an increase in CH4 permeance as the operating temperature is increased from 35 to 200 °C, which can be related to an increase in the rate of diffusion. However, the selectivity decreases with increasing operating temperature due to the smaller changes in the CO2 permeance. These smaller changes in CO2 permeance can be related to the stronger adsorption of this gas on the carbon surface at lower operating temperatures. Interestingly, regardless of the original pyrolysis temperature, the selectivity at higher operating temperatures is similar, whereas the permeance remains related to this pyrolysis temperature.  相似文献   

7.
不同彬县焦的水蒸气气化反应动力学研究   总被引:1,自引:0,他引:1  
在常压,900℃~1050℃考察了彬县煤的三种焦样(常规方法制焦、快速热解焦和脱灰快速热解焦)在热天平上的水蒸气气化反应。考察了温度和焦种对水蒸气气化反应的影响。对比了三种焦的动力学参数和比表面积。结果表明,气化温度是影响煤焦气化反应速率的主要因素,提高50℃,反应速率增加一倍。快速热解焦的反应速率在相同反应条件下明显大于慢速焦。三种焦的表观活化能以快速焦最大,因而反应速率受温度的影响也最大,快速脱灰焦次之,慢速焦最小。  相似文献   

8.
生物质热反应机理与活化能确定方法Ⅱ.热解段研究   总被引:3,自引:0,他引:3  
在热重分析仪上研究了杉木木屑在不同升温速率下的热解过程,利用DAEM模型探讨了热解活化能随转化率的变化规律,采用傅里叶红外光谱仪分析了热解温度对木屑热解固体产物半焦有机结构的影响.结果表明,木屑慢速热解过程可分为干燥、过渡、热解和碳化段;热解段活化能为103 kJ/mol~179 kJ/mol,随转化率的升高而变化;温...  相似文献   

9.
晋城无烟煤加压快速热解特性及其对气化反应的影响   总被引:1,自引:0,他引:1  
利用自行设计的加压热重固定床反应器进行了晋城无烟煤加压快速热解特性的研究,并结合热天平半焦等温热失重分析,考察了热解温度、停留时间和热解压力等外部操作条件对煤焦快速热解半焦特性的影响。结果表明,随热解温度的提高、停留时间的延长和热解压力的增大,所得到的半焦产率降低,气化反应性减弱,活化能提高;高温产生较小的比表面积,而停留时间的延长和压力的提高产生较大的比表面积,比表面积与气化反应速率无明显的依存关系。水蒸气气化速率是CO2的四倍左右。  相似文献   

10.
The thermal decomposition behavior and the pyrolysis products of benzyl‐2,3,4,6‐tetra‐O‐acetyl‐β‐D‐glucopyranoside (BGLU) were studied with synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry at temperatures of 300, 500 and 700 °C at 0.062 Pa. Several pyrolysis products and intermediates were identified by the measurement of photoionization mass spectra at different photon energies. The results indicated that the primary decomposition reaction was the cleavage of O‐glycosidic bond of the glycoside at low temperature, proven by the discoveries of benzyloxy radical (m/z = 107) and glycon radical (m/z = 331) in mass spectra. As pyrolysis temperature increased from 300 to 700 °C, two possible pyrolytic modes were observed. This work reported an application of synchrotron VUV photoionization mass spectrometry in the study of the thermal decomposition of glycoside flavor precursor, which was expected to help understand the thermal decomposition mechanism of this type of compound. The possibility of this glycoside to be used as a flavor precursor in high temperature process was evaluated.  相似文献   

11.
First casein was processed by pyrolysis and investigated under optimal thermal treatment condition to obtain a good quality adsorbent with high developed porosity structure and liquid product as a complex raw material for different kind of organic compounds with interesting properties and structures. The yields of hard residue, pitch, pyrolysis water and gases were determined and compared with the yields of pyrolysis products of other investigated different kind of organic materials. The chemical composition of pitch was determined as following: free carbons - 4.52%, organic acids - 0.64%, organic bases -38.00%, phenols - 7.75%, asphaltenes - 0.97%, paraffin's - 1.30%, neutral oils - 16.20% and preasphaltanes - 30.10%. The pitch was fractionated by air distillation into 3 liquid fractions with different boiling range and a bitumen like residue with a lower softening temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Camellia oleifera shell is used as the feedstock to prepare the valuable products by pyrolysis using microwave heating at 400-800 °C. The yield of pyrolysis product is influenced by pyrolysis temperature, which indicates that high pyrolysis temperature promotes to generate bio-gas and restrains the production of biochar. However, pyrolysis temperature little influences the yield of bio-oil. The main compound of bio-oil is phenols, hydrocarbons, ketones, aldehydes and furans, respectively. While, bio-oil produced at 600 °C has as high as 78 % of phenols, which has potential application in chemical industries. The pyrolysis temperature has significantly influenced the composition and heating value of bio-gas. The maximum heating value of bio-gas is 12.44 MJ/Nm3, which is achieved at 600 °C. The physiochemical properties of biochar are also influenced by pyrolysis temperature. Biochar could be used as an adsorbent to adsorb Ag+ from aqueous solution, which is formed the value-added ABiochar composite by reduction. The adsorption and reduction process of Ag+ are investigated. While, ABiochar composite can be used as the catalyst for methylene blue degradation. ABiochar composite can be also used in the lithium ion battery cathode material for energy storage.  相似文献   

13.
The effects of pyrolysis temperature and heating rate on the porous structure characteristics of rice straw chars were investigated. The pyrolysis was done at atmospheric pressure and at temperatures ranging from 600 to 1000 °C under low heating rate (LHR) and high heating rates (HHR) conditions. The chars were characterized by ultimate analysis, field emission scanning electron microscope (FESEM), helium density measurement and N2 physisorption method. The results showed that temperature had obvious influence on the char porous characteristics. The char yield decreased by approximately 16% with increasing temperature from 600 to 1000 °C. The carbon structure shrinkage and pore narrowing occurred above 600 °C. The shrinkage of carbon skeleton increased by more than 22% with temperatures rising from 600 to 1000 °C. At HHR condition, progressive increases in porosity development with increasing pyrolysis temperature occurred, whereas a maximum porosity development appeared at 900 °C. The total surface area (Stotal) and micropore surface area (Smicro) reached maximum values of 30.94 and 21.81 m2/g at 900 °C and decreased slightly at higher temperatures. The influence of heating rate on Stotal and Smicro was less significant than that of pyrolysis temperature. The pore surface fractal dimension and average pore diameter showed a good linear relationship.  相似文献   

14.
Pressurised differential scanning calorimeter (PDSC) has been used to obtain information on the pyrolysis and combustion characteristics of oil shales. Two distinct exothermic peaks were identified in combustion experiments known as low temperature oxidation (LTO) and high temperature oxidation (HTO) reaction regions. The pyrolysis process of all studied oil shale samples showed one exothermic effect at each total pressure studied. Kinetic data were analysed by Roger & Morris and Arrhenius methods and the results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
An experimental study of n-heptane pyrolysis (2.0% n-heptane in argon) has been performed at low pressure (400 Pa) within the temperature range from 780 to 1780 K. The pyrolysis products were detected by using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Photoionization mass spectra and photoionization efficiency spectra were measured to identify pyrolysis products, especially radicals and isomers. Mole fraction profiles of pyrolysis products versus temperature were also measured, indicating that H(2), CH(4), C(2)H(2), and C2-C6 alkenes are major pyrolysis products of n-heptane. Meanwhile, the thermal decomposition pathways of n-heptane have been investigated using theoretical calculation. The calculation results are in good agreement with the experimental measurement. On the basis of the experimental observation and theoretical calculation, the pyrolysis channels of unimolecular dissociation are proposed to understand the pyrolysis process of n-heptane.  相似文献   

16.
Flash vacuum pyrolysis (FVP) had its beginnings in the 1940s and 1950s, mainly through mass spectrometric detection of pyrolytically formed free radicals. In the 1960s many organic chemists started performing FVP experiments with the purpose of isolating new and interesting compounds and understanding pyrolysis processes. Meanwhile, many different types of apparatus and techniques have been developed, and it is the purpose of this review to present the most important methods as well as a survey of typical reactions and observations that can be achieved with the various techniques. This includes preparative FVP, chemical trapping reactions, matrix isolation, and low temperature spectroscopy of reactive intermediates and unstable molecules, the use of online mass, photoelectron, microwave, and millimeterwave spectroscopies, gas‐phase laser pyrolysis, pulsed pyrolysis with supersonic jet expansion, very low pressure pyrolysis for kinetic investigations, solution‐spray and falling‐solid FVP for involatile compounds, and pyrolysis over solid supports and reagents. Moreover, the combination of FVP with matrix isolation and photochemistry is a powerful tool for investigations of reaction mechanism.  相似文献   

17.
煤在合成气、氢气和氮气气氛下的热解研究   总被引:1,自引:1,他引:1  
采用固定床反应器,在合成气气氛下对中国寻甸褐煤、蒙古Shiveeovoo褐煤和Khoot油页岩进行了热解研究。升温速率10 ℃/min,褐煤热解温度400 ℃~800 ℃,油页岩热解温度300 ℃~600 ℃,研究结果与氢气和氮气气氛下的热解进行了比较。结果表明,与加压热解不同,褐煤在不同气氛下常压热解半焦和焦油收率差别不大,但对油页岩,合成气和氢气气氛下热解焦油收率高于氮气,气体收率低于氮气。黄铁矿硫在不同气氛下热解均极易脱除,并部分转化为有机硫。油页岩的总硫脱除率远低于褐煤,与油页岩的高灰分含量有关。与氮气甚至氢气相比,合成气下寻甸褐煤的高总硫脱除率和低有机硫含量与合成气中的CO有关。但CO在油页岩热解脱硫中不起作用,也与油页岩高灰分含量有关。研究结果也表明合成气可代替氢气进行加氢热解。  相似文献   

18.
Summary Possibilities are shown for the identification of the organic layer of inorganic matter coated with organo-functional silanes. The pyrolysis of coated material followed by high resolution capillary gas chromatography is a suitable method for the qualitative and semiquantitative evaluation. As in practice the surface is only covered by a thin (monomolecular) layer the resulting amount of organic material after pyrolysis is very low. This calls for an increase in the amount of pyrolysed material used to an unusually high mass of 10 g. As there is no way to do this online (pyrolysis requires about 30 min), the pyrolysis products were trapped in an organic solvent. Thus the reproducibility of the whole method is very good and the resulting fingerprint gas-chromatograms enable identification of the silane used. The bigger the molecule and the more complicated its structure, the more frequent and intens the peaks shown by the gas-chromatograms. Therefore the detectable amount of coating varies from 0.1 to 0.01% coating of the inorganic carrier. A quick alternative method is also shown. About 100 mg of the coated material is pyrolysed in a 1 ml gas-tight vial for 20 s using a burner. The pyrolysis products are analysed according to headspace GC. This is a convenient method with good reproducibility, assuming the pyrolysis is exactly timed.  相似文献   

19.
采用热裂解-气相色谱-质谱联用技术(Py—GC-MS),选择不同温度,在空气存在的条件下对烟叶重要组分多羟基吡嗪进行了热裂解挥发性成分分析,结果表明:该方法具有较好的重复性(相对标准偏差〈1.1%);不同温度下挥发性的热裂解产物不同;该化合物的热裂解能够产生吡嗪类化合物,而且,随着热裂解温度的升高吡嗪类化合物的含量增加。在挥发性的热裂解产物中,在300℃时吡嗪类化合物只占8.35%,吡啶类化合物占19.07%;在600℃时吡嗪类化合物占16.96%,吡啶类化合物占30.58%;在900℃时吡嗪类化合物占21.61%,吡啶类化合物占27.08%。  相似文献   

20.
吴亿勤  杨柳  刘芳  缪明明  朱洪友  冒德寿 《色谱》2007,25(3):408-412
用在线裂解气相色谱/质谱法(PyGC/MS)研究了4-氧代-β-大马酮的热裂解行为。在氦气氛围中,将4-氧代-β-大马酮分别在350,450,550,650,700和750 ℃下进行热裂解,并以GC/MS对其裂解产物进行定性和半定量分析。结果表明,不同的裂解温度直接影响生成产物的类型和相对含量。4-氧代-β-大马酮可裂解出β-大马酮、4-氧代-β-紫罗兰酮、3,4,4-三甲基-环己-2-烯-1-酮和2,5,5-三甲基-环己-3-烯-1-酮等54种裂解产物。在550 ℃以下时,只有少量4-氧代-β-大马酮发生裂解; 在750 ℃时,几乎完全裂解,转移率达99.74%, 裂解产物达45种之多。随着裂解温度的升高,裂解产物越来越复杂,并出现有害物质如苯、甲苯、蒽和菲等。根据4-氧代-β-大马酮裂解产物相对含量的变化规律,对其裂解产物的形成机理进行了探讨,认为4-氧代-β-大马酮可能按照4种途径发生裂解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号