首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Gd-doped CdO thin films with various Gd concentrations have been prepared on glass and Si wafer substrates using sol gel technique. The films were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and dc-electrical measurements. XRF method was used to determine the %Gd content in the films while XRD was used to study the influence of Gd doping on the detailed crystalline structure. Experimental data indicate that Gd3+ doping with level of less than 2.4% slightly enlarge the CdO crystalline unit cell. The bandgap (E g) of Gd-doped CdO suffers narrowing by about 13% due to a small (0.2%) doping level but with %Gd doping level larger than 2.4%, E g becomes wider than that of undoped CdO. The electrical behaviours of the Gd-doped CdO films show that they are degenerate semiconductors. The 2% Gd-doped CdO film shows increase in its mobility by about 92%, conductivity by 320%, and carrier concentration by 127%, relative to undoped CdO film. From transparent-conducting-oxide point of view, the Gd doping of CdO by sol gel method is not effective. Finally, the absorption in the NIR spectral region was investigated to be due to the free electrons.  相似文献   

2.
Nanocrystals of undoped and nickel-doped zinc oxide (Zn1?x Ni x O, where x?=?0.00?C0.05) were synthesized by the coprecipitation method. Crystalline size, morphology, and optical absorption of prepared samples were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and UV?Cvisible spectrometer. XRD and SEM studies revealed that Ni-doped ZnO crystallized in hexagonal wurtzite structure. Doping of ZnO with Ni2+ was intended to enhance the surface defects of ZnO. The incorporation of Ni2+ in place of Zn2+ provoked an increase in the size of nanocrystals as compared to undoped ZnO. Crystalline size of nanocrystals varied from 10 to 40?nm as the calcination temperature increased. Enhancement in the optical absorption of Ni-doped ZnO indicated that it can be used as an efficient photocatalyst under visible light irradiation. Optical absorption measurements indicated a red shift in the absorption band edge upon Ni doping. The band gap value of prepared undoped and Ni-doped ZnO nanoparticles decreased as annealing temperature was increased up to 800?°C.  相似文献   

3.
Undoped zinc oxide (ZnO) and aluminium-doped zinc oxide (ZAO) thin films have been prepared on glass substrates by RF magnetron sputtering from ceramic and nanopowder targets at room temperature (RT). The effects of target nature on the properties of the films have been studied. The X-ray diffraction (XRD) patterns show that ZnO and Al-doped ZnO thin films are highly textured along the c-axis perpendicular to the surface of the substrate from either nanopowder or ceramic targets. From the SEM images, it appears that the surface morphologies of ZAO films exhibit difference from that of undoped ZnO films. All films exhibit a transmittance higher than 80% in the visible region. The optical band gap (Eg) of ZnO and ZAO films obtained from nanopowder target is higher than those prepared using ceramic target. In two cases, Al-doping leads to a larger optical band gap (Eg) of the films.  相似文献   

4.
In this work, tellurium (Te) doped CdO nanoparticles thin films with different Te concentrations (1, 3, 5, 7 and 10 %) were prepared by sol–gel method. The effects of Te doping on the structural, morphological and optical properties of the CdO thin films were systematically studied. From X-ray diffraction spectra, it has seen that all of thin films were formed polycrystalline and cubic structure having (111), (200) and (311) orientations. The structure of CdO thin films with Te-dopant was formed the unstable CdTeO3 monoclinic structure crystal plane ( $ {\bar{\text{1}}\text{22}} $ 1 ¯ 22 ), however, the intensity of this unstable peak of the crystalline phase decreased with the increase of Te-doping ratio. The strain in the structure is also studied by using Williamson-Hall method. From FE-SEM images, it has seen that particles have homogeneously distributed and well hold onto the substrate surface. Additionally, grain size increases from 27 to 121 nm with the increase of Te-doping ratio. Optical results indicate that 1 % Te-doped CdO thin film has the maximum transmittance of about 87 %, and the values of optical energy band gap increases from 2.50 to 2.64 eV with the increase of Te-doping ratio. These results make Te-doped CdO thin films an attractive candidate for thin film material applications.  相似文献   

5.
Spectroelectrochemical measurements of poly(3,4-ethylenedioxythiophene) (pEDOT) modified by iron hexacyanoferrate (Fehcf) network, chloride (Cl), polystyrenesulfonate (PSS), and hexacyanoferrate (FeCN) ions were shown. Depending on the electrode potential, three main maxima absorbance were recorded. The first related to, the π–π* transition in undoped state of pEDOT, the second and the third are ascribed to transitions between the valence band and the polaron and bipolaron bands, respectively. There is also identified spectrophotometric response from the ligand–metal charge transfer of hexacyanoferrates from pEDOT modified with Fehcf and FeCN. The energy band gap (E g) was evaluated from the spectroelectrochemical curves of the undoped pEDOT films. The pEDOT/Fehcf material exhibits the band gap of 1.40 eV which is the lowest among measured E g values equal 1.55, 1.53, and 1.58 eV for pEDOT/FeCN, pEDOT/Cl, and pEDOT/PSS, respectively. Thus, synergetic effect of polymer and Prussian blue is proved as a significant decrease of the E g value.  相似文献   

6.
Electrical conductivity and optical properties of polypyrrole-chitosan(PPy-CHI) conducting polymer composites have been investigated to determine the optical transition characteristics and energy band gap of composite films.The two electrode method and I-V characteristic technique were used to measure the conductivity of the PPy-CHI thin films,and the optical band gap was obtained from their ultraviolet absorption edges.Depending upon experimental parameter,the optical band gap(Eg) was found within 1.30-2.32 eV as estimated from optical absorption data.The band gap of the composite films decreased as the CHI content increased.The room temperature electrical conductivity of PPy-CHI thin films was found in the range of 5.84×10-7-15.25×10-7 S·cm-1 depending on the chitosan content.The thermogravimetry analysis(TGA) showed that the CHI can improve the thermal stability of PPy-CHI composite films.  相似文献   

7.
Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe3+-doped TiO2 thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe3+ increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe3+ concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe3+ content. The optical band gap (E g) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe3+ content.  相似文献   

8.
A series of Sc-doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 400 degrees C by MOCVD. Both the experimental data and theoretical calculations indicate that Sc3+ doping shrinks the CdO lattice parameters due to its relatively small six-coordinate ionic radius, 0.89 angstroms, vs 1.09 angstroms for Cd2+. Conductivities as high as 18100 S/cm are achieved for CSO films grown on MgO(100) at a Sc doping level of 1.8 atom %. The CSO thin films exhibit an average transmittance >80% in the visible range. Sc3+ doping widens the optical band gap from 2.7 to 3.4 eV via a Burstein-Moss energy level shift, in agreement with the results of band structure calculations within the sX-LDA (screened-exchange local density approximation) formalism. Epitaxial CSO films on single-crystal MgO(100) exhibit significantly higher mobilities (up to 217 cm2/(V x s)) and carrier concentrations than films on glass, arguing that the epitaxial CSO films possess fewer scattering centers and higher doping efficiencies due to the highly textured microstructure. Finally, the band structure calculations provide a microscopic explanation for the observed dopant size effects on the structural, electronic, and optical properties of CSO.  相似文献   

9.
Pure and boron (B) doped iron oxide (Fe2O3) nanostructured thin films were prepared by sol–gel spin coating method. The effects of B (0.1, 0.2, 0.5 and 1 %) content on the crystallinity and morphological properties of Fe2O3 films were investigated by X-ray diffractometer and atomic force microscopy. X-ray diffraction patterns revealed that the Fe2O3 films have a rhombohedral crystalline phase of α-Fe2O3 phase (hematite) with nanostructure and their crystallite size (D) is changed from 27 ± 2 to 45 ± 5 nm with B dopant content. The minimum crystallite size value of 27 ± 2 nm was obtained for 0.2 % B doped Fe2O3 film. Carrying out UV–VIS absorption study for both doped and undoped films at room temperature, it was realized that allowed optical transitions may be direct or indirect transitions. The direct and indirect energy gap values for pure Fe2O3 were obtained to be 2.07 and 1.95 eV, respectively. The optical band gap value of the films was changed with 0.1 % B doping to reach 1.86 eV for direct band gap and 1.66 eV in case of indirect band gap.  相似文献   

10.
We have studied structural and optical properties of thin films of TiO2, doped with 5% ZnO and deposited on glass substrate (by the sol–gel method). Dip-coated thin films have been examined at different annealing temperatures (350–450 °C) and for various layer thicknesses (89–289 nm). Refractive index, porosity and energy band gap were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.97–2.44, the porosity is in the range of 0.07–0.46 and the energy band gap is in the range of 3.32–3.43. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZnO, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 20.23 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range of 8.61–29.48 nm.  相似文献   

11.
The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)?1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2?×?10?15 to 6.5?×?10?15 cm2 s?1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.  相似文献   

12.
Amorphous Se90In10?xSnx (x=2, 4, 6, and 8) thin films of thickness 1000 Å were prepared on glass substrates by the thermal evaporation technique. Optical parameters of the films were investigated, in the wavelength range 400–700 nm, before and after irradiation by 4, 8, and 12 kGy doses of γ-ray. The optical absorption coefficient α for as-deposited and gamma irradiated films was calculated from the reflectance R and transmittance T measurements, which were recorded at room temperature. From the knowledge of α, at different wavelengths, the optical band gap Eg was calculated for all compositions of Se–In–Sn thin films before and after gamma irradiation. Results indicate that allowed indirect optical transition is predominated in as-deposited and irradiated films. Besides, it is found that the band gap decreases with increasing Sn concentration and this is attributed to the corresponding decrease in the average single bond energy of the films. The band gap, after irradiation at different doses of γ-ray, was found to decrease for all compositions of the studied films. This post-irradiation decrease in the band gap was interpreted in terms of a bond distribution model.  相似文献   

13.
Cerium oxide thin films were prepared by combined electron beam evaporation and ion beam assisted deposition techniques (EBE–IBAD). Their crystallographic structures, microstructures, and optical properties were studied as a function of the substrate temperature (200 °C and 500 °C) and the dose of Ar+ or O2+ ion assistance during growth. X-ray diffraction was used to estimate the crystallographic texture, grain size, microstrain and lattice constant. Sample microstructure was studied by scanning electron microscopy. Transmission UV–vis spectroscopy was employed to obtain optical information (band gap, density, and refractive index). All films showed a cubic CeO2 structure with different preferential growth depending on the preparation conditions. The bombardment with Ar+ ions during film deposition proved to be very effective for changing the film structure, hindering columnar growth and producing smaller grain sizes and higher values of microstrain and lattice constant. Films grown at 200 °C and Ar+ ion assistance showed the highest density, the smallest grain size (~10 nm) and a high expansion of the lattice constant (up to ~1%). This expansion is related to the presence of Ce3+ at the grain boundaries. Ion assistance during the growth leads to films with higher values of refractive index and lower values of band gap.  相似文献   

14.
The formation of carbonaceous clusters in ion‐irradiated polymer films was investigated extensively. Information about these clusters may be obtained with ultraviolet–visible (UV–vis) spectroscopy. The optical band gap (Eg), calculated from the absorption edge of the UV spectra of these polymers, can be correlated to the number of carbon atoms (N) in a cluster with the modified Tauc equation. The structure of the cluster is also related to Eg; for example, a six‐membered‐benzene‐ring‐type structure has an Eg of ≈5.3 eV, whereas a buckminsterfullerene‐type structure has an Eg of ≈4.9 eV. These clusters are responsible for the electrical conductivity in these films. In this work, polycarbonate films (20 μm thick) were irradiated with 45‐MeV Li ions at fluences of 1 × 1012 to 1 × 1013 cm−2 and were characterized with UV–vis spectroscopy and impedance measurements. The Eg values, calculated from the absorption edge in the 280–315‐nm region with the Tauc relation, varied from 4.39 to 4.35 eV for the pristine and various irradiated samples, respectively. The cluster size showed a range of 60–62 carbon atoms per cluster. The sheet conductivity (σdc) and loss (tan δ) values of 10−16 Ω−1cm−1 and 10−3 for the pristine sample changed to 10−15 Ω−1cm−1 and 10−2, respectively, for the irradiated samples. This increase in the values of σdc and tan δ may be correlated to the increase in the size of the carbonaceous clusters. This study provides insight into the mechanism of electrical conductivity in irradiated polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1589–1594, 2000  相似文献   

15.
Polyethylene glycol–polyvinyl alcohol (PEG–PVA) blend is a multifunctional material and controlling its properties is important for various medical and industrial uses. In this paper, we report the influence of carboxymethyl cellulose (CMC) and doping with tin oxide (SnO2) nanoparticles (NPs) on the structural and optical properties of PEG–PVA. The prepared samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and UV–Vis-NIR spectroscopies. SnO2 NPs of rutile structure, average crystallite size of ~30.2 nm and optical band gap (Eg) of 3.68 eV were prepared by a simple sol–gel process. CMC addition enhances the crystallinity of PEG–PVA that then gradually reduced by increasing SnO2 doping ratio. The optical transmittance of PEG–PVA increased from 77 to 90% after mixing with CMC and then decreased to 64% with increasing SnO2 content to 1.5%. Also, the Eg of PEG–PVA increased from 5.20 to 5.28 eV and then decreased to 4.88 eV due to CMC addition and SnO2 incorporation, respectively. The refractive index, the dispersion parameters and the optical conductivity of PEG–PVA, CMC/PEG–PVA and of its nanocomposite films are discussed. The correlation between the structural modifications and the resultant optical properties are reported.  相似文献   

16.
Schiff base oligomer of 2-[(4-fluorophenyl) imino methylene] phenol (FPIMP) was synthesized via oxidative polycondensation reaction in an alkaline medium. Oligomer-metal complex compounds were synthesized from the reactions of oligo-2-[(4-fluorophenyl) imino methylene] phenol (OFPIMP) with Co+2, Ni+2 and Cu+2 ions. The synthesis was achieved by oxidative coupling based on air oxygen as an oxidant. While synthesized Schiff base oligomer was soluble in most common organic solvents, its metal complexes were only soluble in dimethylsulfoxide. Electrochemical HOMO and LUMO band gap (Eg) of monomer, oligomer and its metal complexes were calculated from oxidation and reduction onset values. According to cyclic voltammetry (CV) and UV-vis measurements, electrochemical energy gaps and optical band gap (Eg) values of monomer and oligomer were found to be 3.26 and 3.10; 3.15 and 2.96 eV, respectively. Conductivity measurements of doped and undoped Schiff base oligomer and its metal complexes were carried out by electrometer at a room temperature and atmospheric pressure and were calculated from four-point probe technique. When iodine was used as doping agent, conductivity of this oligomer and its metal complexes were observed to be increased.  相似文献   

17.
Molybdenum disulfide nanoparticles are of interest for their extensive use in heterogeneous catalysis. Here, we report a systematic density functional theory study carried out to investigate the electronic effects of Co(Ni) mono-substitutions on triangular molybdenum sulfide models of nanometric scale. On the basis of the electronic structure, the charge distribution and the Δ(ELUMO − EHOMO) gap analysis, the triangle molecular model with nickel substitution is identified as more favorable for inducing the best catalytic performance. Nickel consistently induces stronger electronic rearrangements than cobalt, on the molybdenum first-neighbor atoms, which are connected with its higher promoting effect. Charge distribution analysis points out a chemical reduction on the molybdenum sites when the cluster is doped. Moreover, nickel substitution produces smaller Δ(ELUMO − EHOMO) gaps than cobalt substitutions, revealing that Ni-doped clusters are more reactive.  相似文献   

18.
In order to study optical and electrical properties of (Pb1-xLax)TiO3 (PLT) films with varying La concentration, the PLT films were deposited by sol-gel process. X-ray diffraction revealed that a pseudocubic phase of the PLT film became dominant with increasing La concentration due to decrease of lattice constant of c-axis. Three-dimensional atomic force microscopy images showed that the grain size and root mean square surface roughness decreased by addition of La. The optical band gap of the PLT films became wider when Pb was substituted with La. The addition of La increased the transparency of the PbTiO3 film and shifted the threshold for initiation of absorption to shorter wavelength. Hysteresis loops of the PLT films showed that remanent polarization and coercive field decreased with increasing La concentration. In addition, we modified the surface of the PLT film with La concentration of 5% using a keV oxygen ion beam at different doses. The optical band gap of the PLT film was changed by the oxygen ion beam irradiation although the XRD patterns and the transmittance values were not significantly changed. In measuring AFM images of the surface of modified PLT film, significant changes of the grain shape and size were not found. Moreover, polarization and dielectric constant were not changed after oxygen ion irradiation. These results suggested that addition of La could affect the optical and electrical properties of the PbTiO3 and PLT films and that surface modification by oxygen ion beam modification with 1 keV energy can change the surface property but not bulk property.  相似文献   

19.
The electronic structures and optical properties of rocksalt indium nitride (InN) under pres-sure were studied using the first-principles calculation by considering the exchange and cor-relation potentials with the generalized gradient approximation. The calculated lattice con-stant shows good agreement with the experimental value. It is interestingly found that the band gap energy Eg at the Γ or X point remarkably increases with increasing pressure, but Eg at the L point does not increase obviously. The pressure coefficient of Eg is calculated to be 44 meV/GPa at the Γ point. Moreover, the optical properties of rocksalt InN were calculated and discussed based on the calculated band structures and electronic density of states.  相似文献   

20.
Low band gap polymer complexes are promising due to its flexibility, and exhibiting electronic and optical properties of inorganic semiconductors. The effect of PEG on the physical properties of PVA was evaluated. Then, blend (PVA: PEG = 50:50) doped with rare earth (La or Y) and transition metal (Fe or Ir) chlorides to obtain solid polymer electrolyte films. XRD shows that adding PEG to PVA results in a new peak, 2θ = 23o with increased intensity as PEG ratio increases. However, doping with La3+, Fe3+ or Ir3+ eliminate this peak and decrease the crystallinity. SEM exhibits significant changes in the morphology of films. FTIR confirms miscibility between PVA & PEG and the complexation of the salts. The optical band gap (Eg) of PVA ~ 5.37 eV, decreased slightly by blending with PEG. While it decreased significantly to 2.64 eV and 2.78 eV after doping with Fe3+ or Ir3+. There are a consistency between Eg values obtained by Tauc's model and that obtained from the optical dielectric loss. The dielectric constant and loss, in temperature range 303–405 K & frequency range 1.0 kHz ‐ 5.0 MHz, indicate one or two relaxation peak(s) depending on the film composition. Accordingly, conduction mechanism varied between correlated barrier hopping and large polaron tunneling. The DC conductivity was strongly depend on the dielectric loss. The transition metal salts appear to be more effective than the rare earth ones in increasing σac of films to higher values that candidates them in semiconductors industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号