首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在重力场和磁场影响下自旋刚性航天器的周期运动   总被引:1,自引:0,他引:1  
考虑重力场和磁场对轴对称航天器本体的影响,研究其质心在圆形轨道上的运动,通过降低系统的运动方程数,并将它变成为一个带电粒子在电磁场作用下的平面运动.确认系统运动是稳定的,并通过Liapunov全纯积分定理,构建其近似的周期运动.  相似文献   

2.
A model of a degenerate ideal gas of nucleons and electrons in a superstrong magnetic field is used to describe the state of matter in the central region of a strongly magnetized neutron star. The influence of a constant uniform superstrong magnetic field on the equilibrium conditions and the equation of state for the degenerate gas of neutrons, protons, and electrons is investigated in the framework of this model. The contribution determined by the interaction of the anomalous magnetic moments of the fermions with the magnetic field is taken into account. The influence of the superstrong magnetic field on the process of gravitational collapse of a magnetized neutron star is discussed under the assumption that the central region of the star consists mostly of degenerate neutrons. We show that if the densities of electrons, protons, and neutrons are relatively low depending on the field strength, the fermion gases in a superstrong uniform magnetic field become totally polarized with respect to the spin. We discuss the possibility of spontaneous magnetization occurring in a system of degenerate neutrons where the exchange interaction effects are taken into account.  相似文献   

3.
The free motion of a thin cylindrical body is investigated based on a previously derived expression for the radiation force acting on moving point sources in a stratified fluid. The fundamental equations of motion are derived, the limits of applicability of the approximation used are indicated and the results of calculations of typical trajectories of a body which begins to move with a specified velocity from a position of neutral buoyancy at an angle to the horizon are presented. Calculations of the trajectory of motion of a thin cylindrical body in a stratified fluid when the total radiation force is taken into account show that the effect of the lateral component of this force is considerable and leads not only to quantitative corrections but also to qualitative effects (for example, to an increase in the oscillations of the body and a change in its direction of motion). The results obtained pertain both to the motion of solids in fluids and to the translational motion of vortex dipoles in weakly stratified media.  相似文献   

4.
A model of a degenerate gas consisting of neutrons that are in chemical equilibrium with degenerate protons and electrons in a stationary and homogeneous superstrong magnetic field is used to describe the state of the matter in central regions of strongly magnetized neutron stars. Expressions for thermodynamic quantities (such as energy density, particle density, pressure, and magnetization) characterizing a degenerate gas of neutrons, protons, and electrons are obtained. In these expressions, the contributions determined by the interaction between anomalous magnetic moments of fermions and the magnetic field are taken into account. Macroscopic effects that may occur in strongly magnetized neutron stars are discussed. We show that all thermodynamic quantities characterizing electrically charged fermions in a strong magnetic field are subject to nonperiodic oscillations caused by the interaction of the anomalous magnetic moments of protons and electrons with the magnetic field. We also show that if the nucleon density and the electron density exceed threshold values that are relatively small and depend on the magnetic field strength, all fermions are fully polarized with respect to the spin. The full spin polarization effect in neutrons is caused by the interaction between the anomalous magnetic moment and the magnetic field. The obtained results may prove useful in understanding processes that occur in the nucleus of a neutron star with a magnetic field frozen into the star.  相似文献   

5.
The problem of secondary motion induced by the steady rotation of a magnetized sphere in an infinite incompressible viscous conducting fluid is considered. It is found that the secondary flow adds nothing to the couple required tomaintain the motion and the effect of the magnetic field is to damp the secondary velocity field.  相似文献   

6.
A numerical model of particle motion in fluid flow under the influence of hydrodynamic and magnetic forces is presented. As computational tool, a flow solver based on the Boundary Element Method is used. The Euler-Lagrange formulation of multiphase flow is considered. In the case of a particle with a magnetic moment in a nonuniform external magnetic field, the Kelvin body force acts on a single particle. The derived Lagrangian particle tracking algorithm is used for simulation of dilute suspensions of particles in viscous flows taking into account gravity, buoyancy, drag, pressure gradient, added mass and magnetophoretic force. As a benchmark test case the magnetite particle motion in cellular flow field of water is computed with and without the action of the magnetic force. The effect of the Kelvin force on particle motion and separation from the main flow is studied for a predefined magnetic field and different values of magnetic flux density. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A linearized equation for the propagation of surface gravitational waves in a layer of magnetized liquid of finite depth is examined. The liquid is assumed to be inviscid, incompressible, and to possess magnetization properties in the absence of electrical conductivity, while the motion is assumed to be irrotational. Travelling wave solutions are obtained. The dependences of the phase and group velocities of the magnetic liquid on the magnetic parameters are studied. It is shown that for some values of the magnetic parameters there is an interval of short wavelengths for which the group velocity is negative, which indicates that the wave energy propagates in the negative direction.  相似文献   

8.
An unsteady free convective flow through porous media of viscous, incompressible, electrically conducting fluid through a vertical porous channel with thermal radiation is studied. A magnetic field of uniform strength is applied perpendicular to the vertical channel. The magnetic Reynolds number is assumed very small so that the induced magnetic field effect is negligible. The injection and suction velocity at both plates is constant and is given by v 0. The pressure gradient in the channel varies periodically with time along the axis of the channel. The temperature difference of the plates is high enough to induce the radiative heat. Taking Hall current and Soret effect into account, equations of motion, energy, and concentration are solved. The effects of the various parameters, entering into the problem, on velocity, temperature and concentration field are shown graphically.  相似文献   

9.
We investigate the time-dependent flow of an incompressible Sisko fluid over a wall with suction or blowing. The flow is caused by sudden motion of the wall in its own plane. The magnetodynamic nature of the fluid is taken into account by applying a variable magnetic field. The resulting nonlinear problem is solved by invoking a symmetry approach and numerical techniques. The essential features of the embedded key parameters are described. Particularly the significance of the rheological effects is studied.  相似文献   

10.
Fast rotation of a symmetric heavy rigid body about a fixed point (the kinetic energy is large in comparison with the potential) is considered in cases when the resonance equations of Euler's motion /1, 2/ are approximately satisfied at the initial instant (the body is assumed to effect turns, ε is small, during time . It is shown that during that time ( ) a finite deviation from inertial motion takes place. Such mechanical effect is similar to the precession of a fast top, except that it is more “early” (in the considered time scale the top precession is slow). Approximate equations that define the motion in the principal order and are integrable in quadratures. The formal process of derivation of higher approximations is indicated, and a geometric interpretation of motions is given.  相似文献   

11.
The motions of a hybrid (discrete-continual) system, consisting of a carrier rigid body and an elastic element with distributed parameters fastened to it are investigated. Two types of fastening are considered: (1) both ends are clamped, and (2) one of the ends is clamped while the other is free. A closed system of integro-differential equations is obtained which describes the state of the system under arbitrary initial conditions and forces applied to the rigid body. The perturbed motion of the rigid body in the case of a quasi-linear restoring force is investigated using asymptotic methods. The motions are studied both when there is internal resonance between the oscillations of the rigid body and the natural oscillations of the element, and when there are no such resonances. Qualitative effects are found.  相似文献   

12.
We consider the motion of a rigid body in a viscoplastic material. This material is modeled by the 3D Bingham equations, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is an inequality (due to the plasticity of the fluid), and it involves a free boundary (due to the motion of the rigid body). We approximate it by regularizing the convex terms in the Bingham fluid and by using a penalty method to take into account the presence of the rigid body.  相似文献   

13.
本文的第一部份将Synge[2]关于转动变换的推导用张量公式表达,进一步阐明作者在文[7]中所求得正交变换式的几何意义.文中并讨论转轴矢量的张量性质.文中后一部份应用拖带坐标系描述法讨论回转磁效应(Einstein-de Haas效应),建立一个求变形体中求磁化体力矩的简单公式.  相似文献   

14.
The new friction model proposed in this paper takes all types of friction into account: sliding, pivoting and rolling friction. The model depends on two parameters. With a zero value of one parameter it is converted into the Contensou–Zhuravlev model, and with a zero value of the other parameter it is converted into the Coulomb model.The interaction of a body with the bearing surface during translational motion of the body is described fairly adequately by the classical model of dry friction (Coulomb's law). In the case of plane-parallel translational motion of the body, the Contensou–Zhuravlev model must be used;1, 2 this model takes both sliding friction and pivoting friction into account. The friction model proposed below is suitable for describing arbitrary translational motion of the body.  相似文献   

15.
A nonlinear (energy) stability analysis is performed for a rotating magnetized ferrofluid layer heated from below saturating a porous medium, in the stress-free boundary case. By introducing a generalized energy functional, a rigorous nonlinear stability result for a thermoconvective rotating magnetized ferrofluid is derived. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body force. It is found that the nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of linear instability analysis, and thus indicates that the subcritical instabilities are possible. However, it is noted that, in case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M 3, medium permeability, D a , and rotation, , on subcritical instability region has also been analyzed. It is shown that with the increase of magnetic parameter, M 3, and Darcy number, D a , the subcritical instability region between the two theories decreases quickly while with the increase of Taylor number, , the subcritical region expands. We also demonstrate coupling between the buoyancy and magnetic forces in the presence of rotation in nonlinear energy stability analysis as well as in linear instability analysis.   相似文献   

16.
The motion of a system (a rigid body, symmetrical about three mutually perpendicular planes, plus a point mass situated inside the body) in an unbounded volume of a perfect fluid, which executes vortex-free motion and is at rest at infinity, is considered. The motion of the body occurs due to displacement of the point mass with respect to the body. Two cases are investigated: (a) there are no external forces, and (b) the system moves in a uniform gravity field. An analytical investigation of the dynamic equations under conditions when the point performs a specified plane periodic motion inside the body showed that in case (a) the system can be displaced as far as desired from the initial position. In case (b) it is proved that, due to the permanent addition of energy of the corresponding relative motion of the point, the body may float upwards. On the other hand, if the velocity of relative motion of the point is limited, the body will sink. The results of numerical calculations, when the point mass performs random walks along the sides of a plane square grid rigidly connected with the body, are presented.  相似文献   

17.
S.S. Tak  Arti Lodha 《PAMM》2007,7(1):2100089-2100090
The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a doubly stratified saturated porous medium subjected to a magnetic field is studied, taking into account the Dufour and Soret effects. It is found that the similarity solution exists for the case of uniform surface heat and mass flux conditions when the thermal and solutal stratification of the medium are assumed to have power function form x1/3. The resulting set of ordinary coupled nonlinear differential equations is solved numerically using shooting technique. Nusselt and Sherwood numbers are tabulated for various values of the involved parameters. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We deal with the problem of orbital stability of planar periodic motions of a dynamically symmetric heavy rigid body with a fixed point. We suppose that the center of mass of the body lies in the equatorial plane of the ellipsoid of inertia. Unperturbed periodic motions are planar pendulum-like oscillations or rotations of the body around a principal axis keeping a fixed horizontal position. Local coordinates are introduced in a neighborhood of the unperturbed periodic motion and equations of the perturbed motion are obtained in Hamiltonian form. Regions of orbital instability are established by means of linear analysis. Outside the above-mentioned regions, nonlinear analysis is performed taking into account terms up to degree 4 in the expansion of the Hamiltonian in a neighborhood of unperturbed motion. The nonlinear problem of orbital stability is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients. The orbital stability is investigated analytically in two limiting cases: small amplitude oscillations and rotations with large angular velocities when a small parameter can be introduced.  相似文献   

19.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical plate is studied numerically, taking into account the effects of Ohmic heating and viscous dissipation. A uniform magnetic field is applied perpendicular to the plate. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. Both the aiding-buoyancy mode and the opposing-buoyancy mode of the mixed convection are examined. The velocity and temperature profiles as well as the local skin friction and local heat transfer parameters are determined for different values of the governing parameters, mainly the magnetic parameter, the Richardson number, the Eckert number and the suction/injection parameter, fw. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase owing to suction of fluid, increasing the Richardson number, Ri (i.e. the mixed convection parameter) or decreasing the Eckert number. This trend reverses for blowing of fluid and decreasing the Richardson number or decreasing the Eckert number. It is disclosed that the value of Ri determines the effect of the magnetic parameter on the momentum and heat transfer.  相似文献   

20.
A mechanical system, consisting of an invariable rigid body (a carrier) and a subsystem, the configuration and composition of which may vary with time (the motion of its components with respect to the carrier is specified), is considered. The system moves in a uniform gravitational field around a fixed point of the carrier. The general form of the quadratic integral is obtained when there is no dynamic symmetry, and the necessary and sufficient conditions for it to exist are found. The conditions when the integral can be split into two independent integrals and the equations of motion are reduced to autonomous form, are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号