首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we introduce a new extrapolation formula by combining Richardson extrapolation and Sloan iteration algorithms. Using this extrapolation formula, we obtain some asymptotic expansions of the Galerkin finite element method for semi-simple eigenvalue problems of Fredholm integral equations of the second kind and improve the accuracy of the numerical approximations of the corresponding eigenvalues. Some numerical experiments ave carried out to demonstrate the effectiveness of our new method and to confirm our theoretical results.  相似文献   

2.
In this article, we employ trigonometric wavelet bases to numerical solution of Fredholm integral equations of first kind in Holder space. Employment of Galerkin method for trigonometric wavelets in Fredholm integral equations of first kind has resulted in occurrence of two-dimensional trigonometric wavelets. Here, we present the convergence of two-dimensional trigonometric wavelets in numerical solution in Holder space C α([a, b]).  相似文献   

3.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

4.
In this paper, we consider Galerkin method for weakly singular Fredholm integral equations of the second kind and its corresponding eigenvalue problem using Legendre polynomial basis functions of degree ≤n. We obtain the convergence rates for the approximated solution and iterated solution in weakly singular Fredholm integral equations of the second kind and also obtain the error bounds for the approximated eigenelements in the corresponding eigenvalue problem. We illustrate our results with numerical examples.  相似文献   

5.
Periodic harmonic wavelets (PHW) were applied as basis functions in solution of the Fredholm integral equations of the second kind. Two equations were solved in order to find out advantages and disadvantages of such choice of the basis functions. It is proved that PHW satisfy the properties of the multiresolution analysis.  相似文献   

6.
Fredholm Integro——differential型方程的Legendre小波方法   总被引:3,自引:0,他引:3  
石智  邓志清 《数学研究》2009,42(4):411-417
研究Legendre小波方法求解具有一阶导和二阶导类型的线性Fredholm integro-differential型方程。应用Legendre小波逼近法把这两类方程分别化为代数方程求解.实例说明。Legendre小波在解决这两类方程时的可行性和有效性.  相似文献   

7.

We analyze the Legendre and Chebyshev spectral Galerkin semidiscretizations of a one dimensional homogeneous parabolic problem with nonconstant coefficients. We present error estimates for both smooth and nonsmooth data. In the Chebyshev case a limit in the order of approximation is established. On the contrary, in the Legendre case we find an arbitrary high order of convegence.

  相似文献   


8.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   

9.
In this paper, we present further development of the local discontinuous Galerkin (LDG) method designed in [21] and a new dissipative discontinuous Galerkin (DG) method for the HuntermSaxton equation. The numerical fluxes for the LDG and DG methods in this paper are based on the upwinding principle. The resulting schemes provide additional energy dissipation and better control of numerical oscillations near derivative singularities. Stability and convergence of the schemes are proved theoretically, and numerical simulation results are provided to compare with the scheme in [21].  相似文献   

10.
In this paper, an efficient wavelet Galerkin method based on the stochastic operational matrix of second kind Chebyshev wavelet is proposed for solving stochastic Itô-Volterra integral equations. Convergence and error analysis of the presented wavelets method are investigated. The numerical results are compared with exact solution and those of other existing methods.  相似文献   

11.
This note presents a wavelets‐Galerkin scheme for the numerical solution of a Stokes problem by using the scaling function of a symmetric biorthogonal spline wavelets that can be modified to generate the divergence‐free wavelets. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 193–198, 2004  相似文献   

12.
The Legendre Galerkin Chebyshev collocation least squares method is presented for a second‐order elliptic problem with variable coefficients. By introducing a flux variable, the original problem is rewritten as an equivalent first‐order system. The present method is based on the Legendre Galerkin method, but Chebyshev–Gauss–Lobatto collocation is used to deal with the variable coefficient and the right hand side terms. The coercivity and continuity of the method are proved and an error estimate in the ‐norm is derived. Some numerical examples are given to validate the efficiency and accuracy of the scheme. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1689–1703, 2016  相似文献   

13.
The Legendre spectral Galerkin method for the Volterra integral equations of the second kind is proposed in this paper. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors (in the L 2 norm) will decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical examples are given to illustrate the theoretical results.   相似文献   

14.
In this paper, we analyze the transmission and reflection properties of a high order discontinuous Galerkin method for dispersive Maxwell's equations, originally proposed by Lu et al. [J. Comput. Phys. 200 (2004), pp. 549-580]. We study the reflection and transmission properties of the numerical method for up to second-order polynomial elements for one- and two-dimensional Maxwell's equations with rectangular meshes. High order accuracy has been shown for reflection and transmission coefficients near material interfaces.  相似文献   

15.
The paper presents a theoretical study of hypersingular equations of the general form for problems of electromagnetic-wave diffraction on open surfaces of revolution. Justification of the Galerkin is given. The method is based on the separation of the principal term and its analytic inversion. The inverse of the principal operator is completely continuous. On the basis of this result, the equivalence of the initial equation to a Fredholm integral equation of the second kind is proven. An example of numerical solution with the use of Chebyshev polynomials of the second kind is considered.  相似文献   

16.
We propose and analyze a C^0 spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is established for a simplified model.  相似文献   

17.
This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order to capture discontinuities of the second order derivative uxx of the solution u, three independent functions p1,p2 and p3 are introduced to represent numerical derivatives using various one-sided limits. The proposed DG frame- work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a nonlinear problem into a mostly linear system of equations where the nonlinearity has been modified to include multiple values of the second order derivative uxz. The proposed framework extends a companion finite difference framework developed by the authors in [9] and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform meshes. In addition to the nonstandard mixed formulation setting, another main idea is to replace the fully nonlinear differential operator by a numerical operator which is consistent with the differential operator and satisfies certain monotonicity (called g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction is to introduce the numerical moment, which plays a critical role in the proposed DG frame- work. The g-monotonicity gives the DG methods the ability to select the mathematically "correct" solution (i.e., the viscosity solution) among all possible solutions. Moreover, the g-monotonicity allows for the possible development of more efficient nonlinear solvers as the special nonlinearity of the algebraic systems can be explored to decouple the equations. This paper also presents and analyzes numerical results for several numerical test problems which are used to guage the accuracy and efficiency of the proposed DG methods.  相似文献   

18.
Solving fractional integral equations by the Haar wavelet method   总被引:1,自引:0,他引:1  
Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples.  相似文献   

19.
20.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号