首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Bovine serum albumin (BSA), as well as completely reduced BSA denoted by P (SH)35, are adsorbed on the hanging mercury drop electrode (HMDE) from alkaline buffer solutions. When time is allowed, a monolayer is adsorbed from very dilute (10?9M) BSA solutions in ammoniacal and borate buffers. With a monolayer of adsorbed protein the voltammograms at the HMDE are then identical in a given ammoniacal or borax buffer containing cobalt(III) or (II) and different BSA concentrations. Voltammograms of P (SH)35 are virtually identical with those of native BSA. At the HMDE the second Brdi?ka current is proportional to concentration of cobalt(III) or (II) and the first current nearly so. Incompletely or completely adsorbed BSA or P (SH)35 is not desorbed on keeping the HMDE for one hour in ammonia buffers. An incomplete layer of adsorbed BSA or P (SH)35 is relatively rapidly desorbed at ?1.6 V (vs. SCE) and a complete film at ?1.65 V, some desorption occurring at ?1.6 V. Upon desorption, the second Brdi?ka current decreases faster than the first one; this is particularly striking in 1 M ammonia buffer. The rate of desorption is increased by calcium chloride, but the rate of adsorption is not, or only slightly, increased in the presence of calcium. Incomplete adsorption occurs at ?1.60 V (vs. SCE) and no adsorption at ?1.65 V. Indications are obtained that “presodium currents” yield a slight plateau at ?1.67 to ?1.70 V, the plateau currents being attributed to adsorbed BSA, while unadsorbed BSA yields catalytic currents without a plateau, the currents merging with the residual one of the buffer. Calcium chloride greatly increases the presodium currents. From many kinetic data obtained at the dropping mercury electrode (DME) and from results at the HMDE it is concluded that, depending on the BSA concentration, Brdi?ka currents at the DME are partly of a kinetic and partly of a surface adsorption nature and partly diffusion-controlled. Adsorption equilibrium is not attained at the DME at 25° at concentrations of BSA smaller than 10?6M.  相似文献   

2.
The mechanism of catalytic hydrogen evolution at a mercury electrode in buffer solutions containing both bovine serum albumin (BSA) and Co(II) or Co(III) is discussed on the basis of the amount of Co(0) formed on the electrode as well as the solubility of the Co(0) species. An appropriate potential was times t, in ammonia buffer solutions in the presence of Co(III). After the mercury drop was washed with 0.1 M ammonia buffer (pH 9.3) and 1 M hydrochloric acid or concentrated hot hydrochloric acid, the amount of cobalt remaining in and/or on the mercury drop was determined by flameless atomic absorption spectrometry. Amalgamation of Co(0), which is insoluble in the ammonia buffer and 1 M hydrochloric acid, was formed on the electrode, regardless of the electrolysis potential, when t was short. With increase of t, Co(0) changed its characteristics, yielding a Co(0) species [Co(0)Group 2] soluble in 1 M hydrochloric acid but insoluble in the buffer, even though the time required for the change depended on the electrolysis potential. It is demonstrated that Co(0)Group 2 plays an important role in the appearance of such catalytic hydrogen currents as the first and second Brdička currents, the P-current of Anzenbacher and Kalous, and ic of Kolthoff and Kihara.  相似文献   

3.
The process of reduction and reoxidation of cobalt(II) in thiocyanate solution at hanging mercury drop electrode has been investigated by cyclic voltammetric, chronoamperometric and anodic stripping methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M cobalt(II), the voltammogram on the first cycle at 0.05 V s?1 gives a cathodic peak at ?1.06 V with hysteresis on reversal, and an anodic wave with a peak potential of ?0.28 V and with two shoulders near ?0.38 and ?0.45 V, respectively. Multicyclic voltammograms under the same conditions give a cathodic peak at ?0.90 V and an anodic peak at ?0.45 V. The reduction and reoxidation of cobalt(II) in thiocyanate solution is accelerated by the reduction products of thiocyanate ion, cyanide and sulphide ions, which are produced during the electroreduction of cobalt(II).A mechanism of reduction and reoxidation of cobalt(II) which involves a chemical reduction of thiocyanate ion by electroreduced metallic cobalt and takes into account cyanide and sulphide ions is proposed. The hysteresis on the cathodic wave is caused by the difference in reduction potentials of cobalt(II)-thiocyanate and-cyanide complexes. Cyclic voltammetric study of cobalt(II) in perchlorate solution containing trace amounts of cyanide and sulphide ions supports these conclusions.  相似文献   

4.
Wen-Rui Jin  Kun Liu 《中国化学》1985,3(4):321-331
The behaviour of the cobalt complex with dimethylglyoxime (DMG), Co(II)A2, at the mercury electrode has been investigated in details. The adsorption phenomena have been observed by both normal pulse polarography and voltammetry with linearly changing potential. Experimental results show that, under the condition of adsorption potentials ranging from ?0.60 to ?0.9 eV (vs. S.C.E.), Co(II)A2 can be adsorbed on the surface of hanging mercury drop electrode (HMDE) very well. The superficial concentrations represents a Langmuir isotherm with both concentration of Co(II)A2 and the preconcentration time. The superficial concentration equation for adsorption voltammetry, corresponding to the condition of the low coverage of the electrode surface, is deduced. The equation has been verified experimentally. The sensitivity of the proposed method, which has been analysed theoretically, is independent on the scan rate and the surface area of HMDE, but depends on the preconcentration time and the diffusion layer thickness. For the 120 sec accumulation, the lower limit of determination is 1.10?9 M.  相似文献   

5.
The process of electroreduction of cobalt(II) in thiocyanate solutions at mercury electrodes has been investigated by cyclic voltammetric, chronoamperometric and polarographic methods. The influences of pH, the concentrations of Co(II) and SCN?, and the reduction products of SCN?, CN? and S2? on the reduction waves are described. The polarographic pre-wave is an autocatalytic in nature. A mechanism involving an initial reduction of Co(II)—SCN? at a mercury electrode followed by the chemical reduction of thiocyanate ion with the electroreduced metallic cobalt, and taking into account cyanide, sulfide, and hydroxide ions, the latter being produced by the hydrolysis of cyanide ion, is presented. Cobalt sulfide adsorbed at the electrode surface stimulates further reduction of Co(II)—CN? and —SCN? complexes, and depresses the interfering influence of Co(OH)2, which is reductively desorbed from the electrode surface with giving rise to an additional peak near ?1.08 V vs. SCE.  相似文献   

6.
The cobalt(II)—thiocyanate system was spectrophotometrically studied at 2.0 M ionic strength (NaClO4) and 25°C. The following formation constants were obtained: β1 = 6.9 M?, β2 = 28.9 M?2, β3 = 12.1 M?3 and β4 = 1.30 M?4. Three wavelengths were considered, 515, 590 and 615 nm, and the molar absorptivities of each species were calculated. Linear relationships were obtained for ε vs n and αi. There is strong evidence that the tetrahedral [Co(SCN)4]2? is virtually the only species absorbing at 590 and 615 nm. An indirect potentiometric method led to comparable equilibrium constants. The cadmium(II)—thiocyanate formation constants used in the indirect method, under the same conditions, were found to be β1 = 21.51 ± 0.09 M?1, β2 = 123 ± 1 M?2, β3 = 130 ± 3 M?3 and β4 = 173 ± 1.2 M?4, in good agreement with earlier literature data.  相似文献   

7.
The reduction and reoxidation processes of the Fe(II)/Fe(Hg) system in thiocyanate solutions at stationary mercury electrodes have been investigated by cyclic voltammetric, anodic stripping and controlled potential electrolysis methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M Fe(II), the voltammogram on the first cycle at. 0.05 V s?1 gives two consecutive cathodic peaks near ?1.2 and ?1.39 V with a hysteresis on the reversal, and an anodic wave with two large peaks near ?0.58 and ?0.05 V and two small peaks near ?0.52 and ?0.43 V, respectively. The multicyclic voltammogram under the same conditions in the potential region between 0.00 and ?1.50 V gives a cathodic wave with a principal peak near ?1.02 V and two small peaks near ?0.02 and ?0.53 V, respectively, and an anodic wave with a principal peak near ?0.72 V, three small peaks near ?0.64, ?0.52 and ?0.40 V, and with a shoulder near ?0.05 V, respectively. The variation of the shape of the voltammogram on the second and subsequent runs is due to the formation of S2? and CN? during the process of electroreduction of Fe(II). A mechanism is proposed which involves an initial reduction of Fe(II)?SCN? produced in an activation step at a mercury electrode, followed by the chemical redox reaction of a part of Fe(0)?SCN? in the species giving FeS and CN?, and takes into account the influence of FeS and CN? on the further reduction and reoxidation of iron. Both FeS and CN? stimulate further reduction, and reoxidation of iron. The hysteresis of the cathodic wave on the first cycle arises from the fact that Fe(II) is reduced more easily at the mercury electrode covered with FeS than at a pure mercury electrode.  相似文献   

8.
A new solvent/polymeric-membrane electrode which exhibits significant potentiometric response toward sulfite ion in the 1 × 10?6?1 × 10?3 M range is described. The membrane is prepared by incorporation of neutral bis(diethyldithiocarbamato)mercury (II) in a thin film of plasticized poly (vinyl chloride). In sharp contrast to classical Hofmeister behavior, the resulting membrane displays little or no response to a wide range of anions (log Kpoti,j ? ?4, i being sulfite) including sulfate, nitrate, nitrite, chloride, perchlorate, salicylate, and alkylsulfonates. Bromide and thiocyanate are moderate interferents, while significant response to iodide, thiosulfate, and sulfide is observed. These selectivity data, along with other response characteristics of the membrane, are used to postulate the mechanism by which the electrode responds to sulfite. Preliminary studies demonstrate that the electrode can be used in conjunction with an outer gas-permeable membrane for highly selective detection of total sulfite species in the form of sulfur dioxide.  相似文献   

9.
J.G. Leipoldt  H. Meyer 《Polyhedron》1985,4(9):1527-1531
The reaction of Cl?, Br?, I?, Co(CN)63? and NCS? with meso-tetrakis (p-trimethylammoniumphenyl)porphinatodiaquorhodate(III), [RhTAPP(H2O)2]5+, has been studied at 15, 25 and 35°C in 0.1 M [H+] with μ = 1.00 M (NaNO3). The value of the acidity constant, Kal, at 25°C is 4.39 × 10?9 M. The reactions are first order in anion concentration up to 0.9 M. The values of the stability constants, K1, and the second order rate constants, k1, for the reaction with Cl?, Br?, I?, Co(CN)63? and NCS? are respectively 0.23 M?1 and 2.5 × 10?3 M?1 s?1, 1.1 M?1 and 6.92 × 10?3 M?1 s?1, 40.0 M?1 and 17.0 × 10?3 M?1 s?1, 550 M?1 and 20.0 × 10?3 M?1 s?1, 3400 M?1 and 20.9 × 10?3 M?1 s?1. The porphine greatly labilizes the Rh(III). There has been about a 500-fold increase in the rate constant for substitution compared to that of [Rh(NH3)5H2O]3+. The substitution rates are however about the same as for [Rh(TPPS)(H2O)2]3?, indicating that the overall charge on the complex plays only a minor role. The kinetic results indicate that dissociative activation is occurring in these reactions.  相似文献   

10.
The adsorption of bismuth(III) on a mercury electrode in chloride perchloric acid medium has been measured by double-step chronocoulemetry. The amount of adsorption of Bi(III) increases with the concentration of chloride, a maximum value being reached around cC1 = 80 mM, to diminish at greater concentrations of the halide. The adsorption of Bi(III) also shows maximum values when the electrode charge varies. The results allow the existence of several coordinated Bi-Cl? species to be postulated, which would be responsible for the adsorption process and the subsequent reduction of Bi(III).  相似文献   

11.
Introducing sodium sulfide (about 10?5 M) into acidic thiocarbamide solutions reduces the gold reduction overpotential. The reaction rate passes through a maximum at a potential of 0.1 V. The overpotential depends on the sulfide ion concentration and the time of electrode exposure to solution prior to the beginning of scanning. Transients of potential measured on a renewable gold electrode in thiocarbamide electrolytes containing catalytically active species served as the basis for calculations of the coefficient of trapping of sulfide ions by the growing gold deposit. The kinetics of gold electrodeposition at fixed surface coverages with adsorbed sulfide ions θ is studied. It is shown that at θ = const, the dependence of the reaction rate on the overpotential is described by the Tafel equation. It is shown that with an increase in θ, the effective values of exchange current and transfer coefficient increase from i 0 ≌ 10?5 A/cm2 and α ≌ 0.25 in pure solutions to α ≌ 0.5 and i 0 ≌ 10?4 A/cm2 at θ ≥ 0.3 and then remains virtually unchanged. The reaction order decreases in the absolute magnitude, remaining negative. Thus for θ ≌ 0, p k = ?logi/?logc = ?1, whereas for θ ≥ 0.3, p k = ?0.3. A possible explanation is proposed for the catalytic effect of the sulfide ion adsorption on the mechanism of the gold reduction from acidic thiocarbamide electrolytes.  相似文献   

12.
A new method of determining electrochemical kinetic parameters by square-wave polarography was presented, in which the faradaic current at θ/2, θ being the half-period of superimposed square-wave voltage, was used for the analysis. The method gave the following kinetic parameters for the electrode reaction, Zn(II) + 2e(Hg), in aqueous solutions at 25° C: kcθ=0.0052 cm s?1 and αc=0.36 in 1 M KCl, kcθ=0.011 cm s?1 and αc=0.30 in 1 M KBr, and kcθ=0.020 cm s?1 and αc=0.52 in 1 M KNCS. Induced adsorption of Zn(II) on the dropping mercury electrode was suggested in solutions containing thiocyanate ions.  相似文献   

13.
The electrode reaction Cu(I)/Cu(Hg) in complex chloride, bromide and iodide solutions with DMSO as solvent has been studied at the equilibrium potential by the faradiac impedance method and a cyclic current-step method. The kinetic data refer to the ionic strength 1 M with ammonium perchlorate as supporting electrolyte and to the temperature 25°C. Double-layer data have been obtained from electrocapillary measurements. From the results for the chloride system at [Cl?]>15 mM it is concluded that the charge transfer is catalysed by ligand bridging at the amalgam and the following parallel reactions predominate: Clads?-Cu++e?(am)Clads?+Cu(am) Clads?-Cu2Clj2?j+e?(am)Clads?+Cu(am)+CuClj1?j At lower [Cl?] and in the whole ligand concentration range available in the bromide and iodide systems the impedance measurements indicate a rate-controlling adsorption step. It is suggested that uncharged complex CuL (L?=halide ion) then forms an adsorbed two-dimensional network on the amalgam surface.  相似文献   

14.
The preparation and physical properties of the new heterotrinuclear acetates, [Ru2CO(μ3-O)(μ-CH3CO2)6(Py)3] (Ru2Co(II)) and [Ru2Co(μ3-O)(μ-CH3CO2)6(Py)3)l3 (Ru2Co(III), Py = pyridine), are reported. Three reversible one-electron-redox waves are observed at 1.19, 0.40, and ?1.24 V vs Ag/Ag+ electrode for Ru2Co(lI) in CH2Cl2. The complexes of Ru2Co(II) and Ru2Co(III) show an intense visible absorption at 570 (? 5950 M?1 cm?1) and 551 nm (? 7240 M?1 cm?1), respectively. The magnetic susceptibilities of both complexes were also measured from 4.2 to 300 K. The resulting least-squares fit parameters for Ru2Co(II) areJRuCo = ?9 cm?1, JRuRu = ?22 cm?1, gCo, = gRu= 2.19.  相似文献   

15.
We have studied the reduction of SeIV in acidic medium (1 M HCl and 1 M HClO4) by classical and alternating current polarography and single sweep linear voltammetry with dropping mercury electrode and hanging mercury drop (HMDE). Two steps are observed distinctly: (1) The reduction of SeIV→Seo leads to a deposit of adsorbed elementary selenium. A mathematical expression is shown for the variation of current which is related to the surface covered at the HMDE. (2) The second step is the reduction of Seo→Se2? which takes place at more negative potentials. The accumulation of Seo may be used for the determination of traces in trace analysis by cathodic stripping. It appears that the behavior of selenium in these two mineral acids is similar. But sometimes it behaves in a different manner, especially in a.c. polarography (in this connection the influence of frequency and demodulation angle are important).  相似文献   

16.
A new cobalt(II) complex, [Co(C3H4N2)(C8H8O5)(H2O)2]·2H2O, of demethylcantharate(7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) with imidazole has been synthesized from cobalt chloride, demethylcantharidin (NCTD) and imidazole. The complex was characterized by elemental analysis, IR, and X-ray single crystal diffraction. The complex crystallized in the monoclinic crystal system and P21/m space group with a?=?0.634790(10)?nm, b?=?0.963030(10)?nm, c?=?1.221770(10)?nm, α?=?90°, β?=?95.9700(10)°, γ?=?90°, V?=?0.742844(15)?nm3, Mr ?=?383.22, Dc ?=?1.713?g?cm?3, Z?=?2, F(0?0?0)?=?398, μ?=?1.206?mm?1, the final R?=?0.0291, and wR?=?0.0837 [I?>?2σ(I?)]. The interaction of the complex with deoxyribonucleic acid (DNA) was studied by electronic absorption spectra, fluorescence spectra, and viscosity measurements, which indicate that the complex binds to calf thymus DNA through a partially intercalative mode. The binding constant K b for the complex was 2.62?×?104?L?mol?1. The antiproliferation activity test showed that the complex has high antiproliferative ability against human hepatoma cells SMMC7721 (with IC50 being 42.8?±?0.9?µmol?L?1) and human lung cancer cells A549 (with IC50 being 65.1?±?3.2?µmol?L?1). The inhibition rates of the complex are much higher than those of NCTD.  相似文献   

17.
Synthesis of [Co(pyDPT)Cl](ClO4)2 from pentadentate ligand and cobalt(II) yields one cis isomer. Hydrolysis in base is extremely rapid (kOH 1.8 × 106 M?1 s?1 at 250°) in this complex, where the geometry and ligand character fix the single site for conjugate base formation as cis to the leaving group.  相似文献   

18.
The electroreduction rate of fluoropentaammine cobalt(III) was studied in a variety of single electrolytes of varying ionic strengths at the mercury-aqueous interface in order to assess the experimental double layer effects in the presence of anion specific adsorption in comparison with the predictions of the coupled Gouy-Chapman-Stern-Frumkin (GCSF) theory. The net charge densities in the inner layer region determined from the experimental rate data using the GCSF model were usually in good agreement with the corresponding literature values that were determined from equilibrium double layer data over a range of ionic strengths (μ=0.01 to 1.0 M) and electrode charge densities (qm~0–15μC cm?2) in NaF, KPF6, KCl, NaN3, KNO3 and NaClO4 electrolytes. Large discrepancies between these kinetic and equilibrium results were observed in concentrated Na2SO4 electrolytes which were ascribed to the effects of ion-pairing between Co(NH3)5F2+ and SO42?. The relative success of the simple GCSF model for this and other Co(III) ammine reduction reactions is compared and contrasted with the corresponding behavior of other electrode reactions that have been studied previously, and possible reasons for the behavioral simplicity of the present systems are suggested. The suitability of Co(III) ammine electroreduction reactions as kinetic probes of the double layer structure at solid electrode-aqueous interfaces is noted.  相似文献   

19.
In this paper, a novel poly(aminosulfonic acid) modified glassy carbon electrode (PASA/GCE) for the determination of Sudan II was fabricated through electrochemical polymerizat ion. The electrochemical behavior of Sudan II at the modified electrode was studied by cyclic voltammetry. Results show that the modified electrode exhibits excellent electrocatalytic activity toward the electrochemical redox reaction of Sudan II. Under optimal experimental conditions, the oxidation peak current is linearly proportional to the concentration of Sudan II in the ranges of 4.0 × 10?8 to 1.0 × 10?6 mol L?1 and 1.0 × 10?6 to 1.2 × 10?5 mol L?1. The linear regression equations are i pa(A) = 2.87c + 3.74 × 10?6, r = 0.9977 and i pa(A) = 0.78c + 6.11 × 10?6, r = 0.9982, respectively, and the detection limit is 4.0 × 10?9 mol L?1. The novel method shows good recovery, reproducibility and sensitivity for the voltammetric determination of Sudan II in food samples.  相似文献   

20.
Carbon monoxide or cyclohexyl isonitrile (L) react with the dinuclear five-coordinated derivatives of 1,1,1-tris(diphenylphosphinomethyl)ethane, (triphos), [(triphos)Co(μ-X)2Co(triphos)](BPh4)2 (X = halide) to give complexes of formula [(triphos)Co(L)X]BPh4. The latter are rare examples of paramagnetic cobalt(II) carbonyl complexes. The molecular structure of [(triphos)Co(CO)Br]BPh4 has been determined from counter diffraction data. The crystals are monoclinic, space group P21/a with cell dimensions a 20.225(8), b 20.664(9), c 13.301(5); β 97.24(5)°, Dc = 1.338 g cm?3 for Z = 4. Full-matrix least squares refinement led to the conventional R factor of 0.057 for 3648 observed reflections. The molecular structure consists of five-coordinate [(triphos)Co(CO)Br]+ cations of intermediate geometry and BPh?4 anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号