首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
偏硅酸钙中Pr3+的4f5d态的光谱特性及Pr3+→Gd3+的能量传递   总被引:2,自引:0,他引:2  
合成了高效发射UV光的CaSiO3:Pr^3 新型荧光体,研究了室温下Pr^3 的4f5d态的发射和激发光谱,Pr^3 的4f5d态的最低子能级向4f^2组态的^3H4,^3H6和^1G4能级跃迁产生UV发射,并不伴随有4f-4f能级跃迁的可见光发射。Pr^3 的浓度猝灭是由于辐射和无辐射能量传递造成的,同时,在CaSiO3中,存在Pr^3 →Cd^3 的能量传递,探讨了其能量传递特性。  相似文献   

2.
本文研究了室温下Pr3 + 在Sr2 SiO4 中的发射光谱和激发光谱 ,在激发光谱中 ,最低激发峰位置低于1S0能级位置 ,属于 5d态的吸收。发射光谱主要由 5d→ 4f的跃迁构成 ,未观测到Pr3 + 的3 P0 和1D2 的辐射跃迁。Pr3 + 的掺杂浓度在 0 0 1mol左右时 ,其发射强度接近最大。在Sr2 SiO4 ∶Pr3 + ,Gd3 + 体系中 ,Pr3 + 的 5d→3 H4 的跃迁与Gd3 + 的8S7/ 2 →6I能级的吸收跃迁相匹配 ,因此发生了Pr3 + →Gd3 的高效无辐射能量传递。固定Pr3 +的浓度时 ,随着体系中Gd3 + 离子浓度的增加 ,Gd3 + 的发射强度也随之增强 ,同时 ,Pr3 + 的发射强度则逐渐下降。  相似文献   

3.
BaMgF4中Gd3+的光谱以及Gd3+和Tb3+离子之间的能量传递   总被引:2,自引:0,他引:2  
刘行仁  石士考 《发光学报》1990,11(4):277-285
本文在室温下研究了BaMgF4氟化物中Gd3+和Tb3+离子的荧光光谱以及它们之间的能量传递。在BaMgF4中Gd3+可以直接将激发能传递给Tb3+离子:在Tb3+(4f75d)-Gd3+(4f)-Tb3+(4f8)能量输运过程中,Gd3+离子可起中间体作用。  相似文献   

4.
采用高温固相法制备了一系列单掺或双掺Pr3+和Yb3+的GdBO3材料,分别测试分析了材料的物相结构和发光性质。在446 nm蓝光( Pr3+:3 H4→3 P2)激发下,检测到Yb3+的近红外特征发射,表明样品中存在Pr3+到Yb3+的能量传递。 Pr3+的掺杂浓度一定时,样品的发光会随着Yb3+掺杂浓度的改变而发生变化。通过对比不同掺杂情况下Pr3+:3 P0能级的衰减曲线,发现随着Yb3+的掺杂浓度的增加,该能级的荧光寿命不断缩短;同时利用不同条件下的衰减特性计算得出不同 Yb3+掺杂浓度样品的能量传递效率。用 Inokuti-Hirayama模型分析表明Pr3+-Yb3+能量传递类型为偶极子-偶极子相互作用。  相似文献   

5.
测量了在真空紫外光激发下,SrAl12O19∶Pr3 在不同温度(308~483 K)时的发射光谱,同时观测到了电偶极禁戒的4f2→4f2和电偶极允许的4f5d→4f2跃迁。随温度升高,4f5d→4f2与1S0发射的相对强度逐渐增强。运用Pr3 4f2组态最高的能级—1S0能级和4f5d组态最低能级间的热平衡模型成功解释了SrAl12O19∶Pr3 发射光谱随温度变化的现象。  相似文献   

6.
硅酸锶掺Eu^3^+的高压合成及发光特性   总被引:2,自引:3,他引:2       下载免费PDF全文
首次采用高压高温方法合成了Sr_2SiO_4:Eu~(3+)Bi~(3+)和SrSiO_3:Eu~(3+)Bi~(3+)发光材料,研究了合成压力、合成温度对发光特性的影响。与常压合成产物相比较,发光谱线发生了红移;谱线半宽度显著增大;发光强度和量子发光效率下降。X射线衍射分析得出,SrSiO_3:Eu~(3+)Bi~(3+)发生了结构相变,Sr_2SiO_4:Eu~(3+)Bi~(3+)结构未变但晶格参数发生了变化,且主衍射峰强度发生了反转。分析表明,发光特性的变化是压致晶场、库仑及自旋~轨道相互作用的变化引起的。  相似文献   

7.
采用溶液反应和固相反应,分别合成了KAIF4基质化合物及KAIF4:Gd、KAIF4:Ce,Gd等磷光体,研究了它们的光谱特性。结果表明,KAIF4:Gd无认顷皮或长波紫外辐激发下,均无任何吸收和发射。在KAIF4:Ce,Gd中,Ce^3+离子能有效地将能量传递给Gd^3+离子,使Gd^3+产生了特征锐发射,具发射强度很大。但当Ce^3+浓度固定不变,改变Gd^3+的^6P1/2→^8S7/2发射  相似文献   

8.
Tb3+掺杂Y2O3纳米晶体中Tb3+离子4f5d跃迁及能量传递的研究   总被引:1,自引:0,他引:1  
采用燃烧法制备了不同Tb3 掺杂浓度和不同粒径的Y2O3:Tb纳米晶体粉末样品,并通过高温退火获得了相应Tb3 掺杂浓度的体材料样品。测量了纳米和体材料样品的发射光谱、激发光谱、X射线衍射谱和荧光衰减曲线,并拍摄了不同粒径样品的透射电子显微镜(TEM)照片。研究纳米Y2O3∶Tb晶体粉末中Tb3 离子的4f5d跃迁发现,由于在近表面的低结晶度环境和颗粒内部的高结晶度环境中Tb3 离子4f5d跃迁对应的激发峰位置不同,不同粒径样品中处于这两种环境的Tb3 离子比例也不同,激发谱的谱线形状存在较大差别,还对Tb3 离子的能量传递进行了研究,发现Y2O3∶Tb晶体粉末中Tb3 的(5D3,7F6)→(5D4,7F0)能量传递类型为受纳米限域效应影响很大的电偶极电偶极相互作用;引起5D4→7F5(543nm)发光浓度猝灭的是不同Tb3 离子5D4能级之间交换相互类型的能量传递,此类型的能量传递受纳米限域效应影响较小。  相似文献   

9.
Ca2SrAl2O6荧光粉中Ce3+和Tb3+的光谱性能研究及能量传递   总被引:1,自引:0,他引:1  
采用高温固相法合成了用于紫外芯片(UVLED)激发的绿色荧光粉Ca2SrAl2O6:Ce3+,Tb3+。测量了其激发光谱和发射光谱,结果显示,材料的发射谱由峰值位于497,545,595和623nm的4组窄带组成,其中位于545nm的发射峰最强,样品能发射很好的绿光;监测545nm发射峰,得到的激发谱由位于320~400nm之间的激发带组成,能被UVLED很好地激发。研究了Ca2SrAl2O6荧光粉中Ce3+对Tb3+发光的敏化现象,发光的敏化作用缘于Ce3+和Tb3+之间的高效无辐射能量传递。共掺激活剂的最佳掺杂浓度为4mol%。  相似文献   

10.
11.
 首次采用高压高温方法合成了Sr2SiO4:Er3+Bi3+和SrSiO3:Er3+Bi3+发光材料,研究了合成压力、合成温度对发光特性的影响。与常压合成产物相比较,发光谱发生了红移;谱线半宽度显著增大;发光强度和量子发光效率下降。X射线衍射分析得出,SrSiO3:Er3+Bi3+发生了结构相变,Sr2SiO4:Er3+Bi3+结构未变但晶格参数发生了变化,且主衍射峰强度发生了反转。分析表明,发光特性的变化是压致晶场、库仑及自旋-轨道相互作用的变化引起的。  相似文献   

12.
研究了紫外光激发下,(REO)3BO3(RE=La、Gd、Y)基质中Pr^3+的光 谱性质;探讨了基质晶格、阳离子半径、Pr^3+-O^2-键的共价性等因素对光谱性 质的影响;分析了Pr^3+的发光强度随组成变化的规律性及Pr^3+的^3P1→^3F2跃迁发射的自身浓度猝灭机理。  相似文献   

13.
采用水热合成法,在较低的温度下制备了分散性,均匀性良好的 LaF3∶ Sm3+,LaF3:Eu3+和LaF3∶Sm3+/Eu3+纳米晶体样品。通过 X 射线衍射(XRD),透射电子显微镜(TEM)和光致发光(PL)等手段,分别对 Sm3+/Eu3+单掺和共掺 LaF3纳米晶体的物相,表面形貌,晶粒尺寸和荧光特性进行了表征。XRD 和 TEM 检测结果显示,所制备的 LaF3纳米晶体呈六方晶体相,平均粒径在40 nm 左右。当采用波长为442 nm 的 He-Cd 连续激光器激发 Sm3+/Eu3+共掺 LaF3样品中的 Sm3+时,在样品发射光谱中观测到了Eu3+的特征荧光发射谱线,实现了 Sm3+向 Eu3+的能量传递。采用光谱学研究方法讨论了能量传递的机理和效率。结果表明,能量传递过程是 Sm3+的4 G5/2激发态与 Eu3+的 5 D 1和5 D 0激发态之间的交叉驰豫所致,并且随着 Eu3+的掺杂浓度的增大,共掺 LaF3∶Sm3+/Eu3+样品的发射谱中的 Eu3+的特征荧光发射强度也随之增强,这说明增加受主 Eu3+的掺杂浓度能够有效地提高 Sm3+→Eu3+能量传递的效率。  相似文献   

14.
采用高温固相法制备了Sr3SiO5 : Eu2+黄色发光材料,研究了Eu2+浓度及共激活剂等对材料发光性能的影响。结果显示,随Eu2+浓度的增大,Sr3SiO5 : Eu2+材料发射强度先增强后减弱,即存在浓度猝灭效应,根据Dexter理论,其浓度猝灭机理为电偶极-偶极相互作用。掺入共激活剂Yb、Tm均能提高材料的发射强度。利用InGaN管芯分别激发Sr2.98Eu0.01Tm0.01SiO5和Sr2.98Eu0.01Yb0.01SiO5材料,获得了很好的白光发射。  相似文献   

15.
游宝贵  尹民  陈永虎  段昌奎 《发光学报》2011,32(12):1216-1220
对比了不同激发波长下水热法合成的K2GdF5:Tb3+(摩尔分数0.5%)单晶材料的光致发光谱线;监测了5 D3→7F6和5 D4→7 F5的激发谱,给出了几组窄带吸收和3个宽带吸收;分析表明窄带发射为Gd3+的8 S7/2→6FJ、8S7/2→6GJ、8S7/2→6DJ、8S7/2→6IJ的跃迁,宽带发射为Gd3+的...  相似文献   

16.
钙钛矿CaSnO3:Pr3+磷光体的发光特性   总被引:1,自引:1,他引:1       下载免费PDF全文
采用高温固相法合成了一种Pr3 离子激活的钙钛矿结构氧化物CaSnO3磷光体.测定了该磷光体的XRD、光致发光光谱、长余辉发射光谱以及长余辉衰减曲线,研究了该磷光体的热释发光.研究结果表明,CaSnO3:Pr3 磷光体具有较好的长余辉特性,进一步深入研究有望开发出一种具有实用价值的新型长余辉发光材料.  相似文献   

17.
本研究报道Pr^3 在SrB4O7中的发光性质,在SrB4O7中Pr^3 离子的4f5d能态高^1S0能级,因此,在207nm UV光激发下,Pr^3 能够把所吸收的一个高能量的UV光子转换为两个可见光子的发射(光子倍增);在此氧化物基质中的光子倍增主要是由于田离子处于弱的晶体场格位之中;由于与稀土弱联结相关的声于振动频串低(hωmax-1200cm^-1),因此还能观察到从^3P0能级向低能级的跃迁.第一个光子的发射由1^S0→1^G4(313nm),^1S0→^1D2(338nm)和^1S0→^1I6(405nm)的辐射跃迁组成;第二个光子的发射由^3P0和^1D2能级向低能级的辐射跃迁组成[^3P0→(^3HJ,^3FJ)和^1D2→(^3H4,^3H5)].  相似文献   

18.
采用高温固相法合成Sr_3P_4O_(13):Ce~(3+),Tb~(3+)荧光粉,通过X射线衍射仪、扫描电子显微镜和荧光光谱仪分析该荧光粉的物相组成、颗粒形貌和发光性能。结果表明:Sr_3P_4O_(13):Ce~(3+)的发射光谱和Sr_3P_4O_(13):Tb~(3+)的激发光谱在300~400 nm有重叠;在近紫外光(290 nm)激发下,该荧光粉发射出Ce~(3+)的蓝光(300~420 nm)和Tb~(3+)的黄绿光(480~500 nm和530~560 nm);当Ce~(3+)的摩尔分数为0.08,Tb~(3+)的摩尔分数从0.01增大到0.09时,Ce~(3+)的4f→5d电子跃迁将能量传递至Tb~(3+)的~5D_3能级和~5D_4能级,Ce~(3+)的发光强度逐渐降低,Tb~(3+)的发光强度逐渐增强,表明Sr_3P_4O_(13)基质中存在Ce~(3+)→Tb~(3+)的能量传递;当掺杂Tb~(3+)的摩尔分数为0.09时,能量传递效率可高达86.46%;样品Sr_(2.61)P_4O_(13):0.24Ce~(3+),0.15Tb~(3+)的色坐标在绿光区域,因此Ce~(3+)和Tb~(3+)共掺杂的Sr_3P_4O_(13)荧光粉可作为绿色荧光材料应用于白色发光二极管。  相似文献   

19.
以BaCO_3、SiO_2、Eu_2O_3为原料在还原气氛下采用高温固相法制备了Ba_3SiO_5∶Eu荧光粉体。实验结果表明,制备Ba_3SiO_5的最佳工艺条件是Ba/Si比为3,1 200℃保温4 h。光谱分析表明,Ba_3SiO_5∶Eu荧光粉在254,365,410 nm激发下发射主峰为566 nm(Eu~(2+)的4f~n~(-1)5d→4f~n)宽带发射,量子效率分别为70%、50%、10%,荧光寿命为百纳秒级;以566 nm为监视波长测得激发谱为主峰在250~450 nm范围内的宽带发射,主峰为360 nm,且在410 nm出现小峰; Eu离子最佳掺杂浓度为5%,由发光强度随掺杂离子浓度变化曲线,可以得出Ba_3SiO_5中Eu离子能量传递是基于电四级-电四级作用。  相似文献   

20.
报道了Tm3+/Ho3+共掺的镓铋酸盐玻璃14Ga2O3-25Bi2O3-20GeO2-31PbO-10PbF2玻璃1.47μm(S波段)发光和能量传递特征,应用Judd-Ofelt理论计算了玻璃的强度参数Ω,(t=2,4,6),自发辐射概率 A、荧光分支比β,荧光辐射寿命τ等各项光谱参数以及有效荧光线宽△λeff和峰值发射截面σpeake.通过测量荧光光谱和荧光寿命研究了Ho3+离子掺杂浓度对Tm3+离子1.47μm波段发光性能的影响,分析了Tm3+和Ho3+之间的能量传递过程.结果表明一定浓度内Ho3+的共掺迅速降低了Tm3+:3 F4能级的粒子数,而对3H4能级粒子数影响不大,从而降低了3F4和3H4能级间布居数反转的难度,极大地提高了1.47 μm发光效率.研究表明镓铋酸盐玻璃是适用于S波段光纤放大器的一种潜在基质材料,而掺杂一定浓度的Ho3+离子有利于提高Tm3+离子在1.47μm波段的发光效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号