首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
To gain insight into the mechanisms and kinetics of 2-azido-N,N-dimethylethanamine's (DMAZ's) thermal decomposition postulated reaction paths were simulated with ab initio and density functional theory quantum chemistry models. Four reaction types were modeled: (i) spin-allowed and spin-forbidden paths involving N-N(2) bond fission and nitrene formation, (ii) HN(3) elimination with the formation of (dimethylamino)ethylene, (iii) N-N(2) bond fission with the formation of molecules with three- or four-membered heterocyclic rings, and (iv) simple scission of C-H, C-N, and C-C bonds. The geometries of stationary points of the reactions were obtained with a MPWB1K/6-31+G(d,p) model. To locate and model the geometries of minimum energy intersystem crossing points for triplet nitrene formation and isomerization, unrestricted broken spin symmetry calculations were performed. Employed to model an analogous path for methyl azide's decomposition, this approach was found to yield results similar to those obtained with a CASSCF(10,8)/aug-cc-pVDZ model. Of the four reaction types studied, N-N(2) bond fissions with singlet or triplet nitrene formation were found to have the lowest barriers. Barriers for paths to cyclic products were found to be 2-4 kcal/mol higher. Kinetic rate expressions for individual paths were derived from the quantum chemistry results, and spin-allowed nitrene formation was found to be dominant at all temperatures and pressures examined. The expression 2.69 × 10(9) (s(-1))T(1.405) exp(-39.0 (kcal/mol)/RT), which was derived from QCISD(T)/6-31++G(3df,2p)//MPWB1K/6-31+G(d,p) results, was found to be representative of this reaction's gas-phase rate. Adjusted on the basis of results from self-consistent reaction field models to account for solvation by n-dodecane, the expression became 1.11 × 10(9) (s(-1))T(1.480) exp(-37.6 (kcal/mol)/RT). Utilizing this result and others derived in the study, a model of the decomposition of n-dodecane-solvated DMAZ was constructed, and it generated simulations that well-reproduce previously published measured data for the process.  相似文献   

3.
Alkylated hydroxylated aromatics are major constituents of various types of fuels, including biomass and low-rank coal. In this study, thermochemical parameters are obtained for the various isomeric forms of methylbenzenediol isomers in terms of their enthalpies of formation, entropies, and heat capacities. Isodesmic work reactions are used in quantum chemical computations of the reaction enthalpies for O-H and H?C-H bond fissions and the formation of phenoxy- and benzyl-type radicals. A reaction potential energy on the singlet-state surface surface is mapped out for the unimolecular decomposition of the 3-methylbenzene-1,2-diol isomer. According to the calculated high pressure-limit reaction rate constants, concerted hydrogen molecule elimination from the methyl group and the hydroxyl group, in addition to intermolecular H migration from the hydroxyl group, dominates the unimolecular decomposition at low to intermediate temperatures (T ≤ 1200 K). At higher temperatures, O-H bond fission and concerted water elimination are expected to become the sole decomposition pathways.  相似文献   

4.
The widespread and long-term use of TNT has led to extensive study of its thermal and explosive properties. Although much research on the thermolysis of TNT and polynitro organic compounds has been undertaken, the kinetics and mechanism of the initiation and propagation reactions and their dependence on the temperature and pressure are unclear. Here, we report a comprehensive computational DFT investigation of the unimolecular adiabatic (thermal) decomposition of TNT. On the basis of previous experimental observations, we have postulated three possible pathways for TNT decomposition, keeping the aromatic ring intact, and calculated them at room temperature (298 K), 800, 900, 1500, 1700, and 2000 K and at the detonation temperature of 3500 K. Our calculations suggest that at relatively low temperatures, reaction of the methyl substituent on the ring (C-H alpha attack), leading to the formation of 2,4-dinitro-anthranil, is both kinetically and thermodynamically the most favorable pathway, while homolysis of the C-NO(2) bond is endergonic and kinetically less favorable. At approximately 1250-1500 K, the situation changes, and the C-NO(2) homolysis pathway dominates TNT decomposition. Rearrangement of the NO(2) moiety to ONO followed by O-NO homolysis is a thermodynamically more favorable pathway than the C-NO(2) homolysis pathway at room temperature and is the most exergonic pathway at high temperatures; however, at all temperatures, the C-NO(2) --> C-ONO rearrangement-homolysis pathway is kinetically unfavorable as compared to the other two pathways. The computational temperature analysis we have performed sheds light on the pathway that might lead to a TNT explosion and on the temperature in which it becomes exergonic. The results appear to correlate closely with the experimentally derived shock wave detonation time (100-200 fs) for which only the C-NO(2) homolysis pathway is kinetically accessible.  相似文献   

5.
Carbon-carbon bond formation reactions are some of the most important processes in chemistry, that provide key steps in the building of more complex molecules from simple precursors. Many organometallic reagents have been successfully used in catalytic carbon-carbon bond formation. [1]  相似文献   

6.
Surface ionization of quaternary ammonium and pyridinium salts evaporated onto a platinum filament has been investigated. The experiments reveal a high selectivity for the formation of intact cations from these salts with virtually no fragmentation up to about 1000 K, and a low level of fragmentation up to about 1300 K, while even at higher temperatures the ionization of volatile non-ionic compounds such as trialkyl amines is largely suppressed. The fragmentation of quaternary cations at higher temperatures is attributed in part to decomposition reactions in a two-dimensional ion trap on the surface formed by the image force of the ions. For some compounds and mixtures, evidence is presented of the exchange of alkyl groups for cations as a thermal reaction prior to volatilization of the salts. The surface ionization technique appears promising for selective detection of quaternary salts from complex mixtures.  相似文献   

7.
The synthesis of 3-(2-methoxy-1,1-dimethylethyl)pyrazole, pz*H is described together with its reactions with the borohydrides MBH(4), where M = Li, Na, and K, under melt conditions. At 180 degrees C, this procedure leads to a mixture of products for M = Li, and at higher temperatures, a derivative LiTp'pz*H, 1, is isolated, wherein a B-H bond and a methyl group have been eliminated and a B-O bond has been formed. For M = Na, the reaction proceeds to give the tris-pyrazolylborate derivative NaTp*, 2, but at higher temperatures the tetra-pyrazolylborate complex NaB(pz*)(4), 3, is obtained. The reactions involving KBH4 and pz*H yield the dinuclear complex K(2)(Tp*)(2)pz*H, 4. The reaction between NaTp* and TlOAc in CH(2)Cl(2) at room temperature leads to the formation of TlTp*, 5, along with NaOAc. Thallium 5 reacts with methyllithium in diethylether to give LiTp*, 6, and thallium metal, and, similarly, 5 and KH react in tetrahydrofuran to give KTp*, 7 and Tl(0). 1-7 have been characterized by elemental analysis, NMR spectroscopy, and by single-crystal X-ray studies, the latter of which reveal the versatile modes of binding for this new ligand bearing hemilabile ether appendages.  相似文献   

8.
Chemically accurate ab initio Gaussian-3-type calculations of the C(10)H(9) potential energy surface (PES) for rearrangements of the 9-H-fulvalenyl radical C(5)H(5)-C(5)H(4) have been performed to investigate the formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) originated from the recombination of two cyclopentadienyl radicals (c-C(5)H(5)) as well as from the intermolecular addition of cyclopentadienyl to cyclopentadiene (c-C(5)H(6)) under combustion and pyrolytic conditions. Statistical theory calculations have been applied to obtain high-pressure-limit thermal rate constants, followed by solving kinetic equations to evaluate relative product yields. At the high-pressure limit, naphthalene, fulvalene, and azulene have been shown as the reaction products in rearrangements of the 9-H-fulvalenyl radical, with relative yields depending on temperature. At low temperatures (T < 1000 K), naphthalene is predicted to be the major product (>50%), whereas at higher temperatures the naphthalene yield rapidly decreases and the formation of fulvalene becomes dominant. At T > 1500 K, naphthalene and azulene are only minor products accounting for less than 10% of the total yield. The reactions involving cyclopentadienyl radicals and cyclopentadiene have thus been shown to give only a small contribution to the naphthalene production on the C(10)H(9) PES at medium and high combustion temperatures. The high yields of fulvalene at these conditions indicate that cyclopentadienyl radical and cyclopentadiene more likely represent significant sources of cyclopentafused PAHs, which are possible fullerene precursors. Our results agree well with a low-temperature cyclopentadiene pyrolysis data, where naphthalene has been identified as the major reaction product together with indene. Azulene has been found to be only a minor product in 9-H-fulvalenyl radical rearrangements, with branching ratios of less than 5% at all studied temperatures. The production of naphthalene at low combustion temperatures (T < 1000 K) is governed by the spiran mechanism originally suggested by Melius et al. At higher temperatures, the alternative C-C bond scission route, which proceeds via the formation of the cis-4-phenylbutadienyl radical, is competitive with the spiran pathway. The contributions of the previously suggested methylene walk pathway to the production of naphthalene have been calculated to be negligible at all studied temperatures.  相似文献   

9.
The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.  相似文献   

10.
The reaction mechanism of C6H5 + C6H5NO involving four product channels on the doublet-state potential energy surface has been studied at the B3LYP/6-31+G(d, p) level of theory. The first reaction channel occurs by barrierless association forming (C6H5)2NO (biphenyl nitroxide), which can undergo isomerization and decomposition. The second channel takes place by substitution reaction producing C12H10 (biphenyl) and NO. The third and fourth channels involve direct hydrogen abstraction reactions producing C6H4NO + C6H6 and C6H5NOH + C6H4, respectively. Bimolecular rate constants of the above four product channels have been calculated in the temperature range 300-2000 K by the microcanonical Rice-Ramsperger-Kassel-Marcus theory and/or variational transition-state theory. The result shows the dominant reactions are channel 1 at lower temperatures (T < 800 K) and channel 3 at higher temperatures (T > 800 K). The total rate constant at 7 Torr He is predicted to be k(t) = 3.94 x 10(21) T(-3.09) exp(-699/T) for 300-500 K, 2.09 x 10(20) T(-3.56) exp(2315/T) for 500-1000 K, and 1.51 x 10(2) T(3.30) exp(-3043/T) for 1000-2000 K (in units of cm3 mol(-1) s(-1)), agreeing reasonably with the experimental data within their reported errors. The heats of formation of key products including biphenyl nitroxide, hydroxyl phenyl amino radical, and N-hydroxyl carbazole have been estimated.  相似文献   

11.
The surface chemistry of vinyltrimethylsilane (VTMS) on Si(100)-2x1 has been investigated using multiple internal reflection-Fourier transform infrared spectroscopy, Auger electron spectroscopy, and thermal desorption mass spectrometry. Molecular adsorption of VTMS at submonolayer coverages is dominating at cryogenic temperatures (100 K). Upon adsorption at room temperature, chemical reaction involving rehybridization of the double bond in VTMS occurs. Further annealing induces several reactions: molecular desorption from a monolayer by 400 K, formation and desorption of propylene by 500 K, decomposition leading to the release of silicon-containing products around 800 K, and, finally, surface decomposition leading to the production of silicon carbide and the release of hydrogen as H(2) at 800 K. This chemistry is markedly different from the previously reported behavior of VTMS on Si(111)-7x7 surfaces resulting in 100% conversion to silicon carbide. Thus, some information about the surface intermediates of the VTMS reaction with silicon surfaces can be deduced.  相似文献   

12.
The decomposition and intramolecular H-transfer isomerization reactions of the 1-pentyl radical have been studied at temperatures of 880 to 1055 K and pressures of 80 to 680 kPa using the single pulse shock tube technique and additionally investigated with quantum chemical methods. The 1-pentyl radical was generated by shock heating dilute mixtures of 1-iodopentane and the stable products of its decomposition have been observed by postshock gas chromatographic analysis. Ethene and propene are the main olefin products and account for >97% of the carbon balance from 1-pentyl. Also produced are very small amounts of (E)-2-pentene, (Z)-2-pentene, and 1-butene. The ethene/propene product ratio is pressure dependent and varies from about 3 to 5 over the range of temperatures and pressures studied. Formation of ethene and propene can be related to the concentrations of 1-pentyl and 2-pentyl radicals in the system and the relative rates of five-center intramolecular H-transfer reactions and β C-C bond scissions. The 3-pentyl radical, formed via a four-center intramolecular H transfer, leads to 1-butene and plays only a very minor role in the system. The observed (E/Z)-2-pentenes can arise from a small amount of beta C-H bond scission in the 2-pentyl radical. The current experimental and computational results are considered in conjunction with relevant literature data from lower temperatures to develop a consistent kinetics model that reproduces the observed branching ratios and pressure effects. The present experimental results provide the first available data on the pressure dependence of the olefin product branching ratio for alkyl radical decomposition at high temperatures and require a value of <ΔE(down)(1000 K)> = (675 ± 100) cm(-1) for the average energy transferred in deactivating collisions in an argon bath gas when an exponential-down model is employed. High pressure rate expressions for the relevant H-transfer reactions and β bond scissions are derived and a Rice Ramsberger Kassel Marcus/Master Equation (RRKM/ME) analysis has been performed and used to extrapolate the data to temperatures between 700 and 1900 K and pressures of 10 to 1 × 10(5) kPa.  相似文献   

13.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

14.
The association reactions of benzene molecules with alkali ions M(+) (Li(+), Na(+) and K(+)) under single collision conditions have been studied using a radiofrequency-guided-ion-beam apparatus and mass spectrometry characterization of the different adducts. Cross-section energy dependences for [M-C(6)H(6)](+) adduct formation have been measured at collision energies up to 1.20 eV in the center of mass frame. All excitation functions decrease when collision energy increases, showing the expected behaviour for barrierless reactions. From ab initio chemical structure calculations at the MP2(full) level, the formation of the adducts makes evident the alkali ion-benzene non-covalent chemical bond. The cross-section energy dependence and the role of radiative cooling rates and unimolecular decomposition on the stabilization of the energized collision complex are also discussed.  相似文献   

15.
The complex potential energy surface and reaction mechanisms for the unimolecular isomerization and decomposition of methyl-nitramine (CH3NHNO2) were theoretically probed at the QCISD(T)/6-311+G*//B3LYP/6-311+G* level of theory. The results demonstrated that there are four low-lying energy channels: (i) the NN bond fission pathway; (ii) a sequence of isomerization reactions via CH3NN(OH)O; (IS2a); (iii) the HONO elimination pathway; (iv) the isomerization and the dissociation reactions via CH3NHONO (IS3). The rate constants of each initial step (rate-determining step) for these channels were calculated using the canonical transition state theory. The Arrhenius expressions of the channels over the temperature range 298-2000 K are k6(T)=1014:8e-46:0=RT , k7(T)=1013:7e-42:1=RT , k8(T)=1013:6e-51:8=RT and k9(T)=1015:6e-54:3=RT s-1, respectively. The calculated overall rate constants is 6.9£10-4 at 543 K, which is in good agreement with the experimental data. Based on the analysis of the rate constants, the dominant pathway is the isomerization reaction to form CH3NN(OH)O at low temperatures, while the NN bond fission and the isomerization reaction to produce CH3NHONO are expected to be competitive with the isomerization reaction to form CH3NN(OH)O at high temperatures.  相似文献   

16.
The potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important. Other decomposition channels, including expulsion of H(2) and H(2)S are of negligible importance. The formation of C(6)H(6)S is predicted to be strong-pressure dependent above 900 K. Further decomposition of C(6)H(6)S produces CS and C(5)H(6). Overall, despite the significant difference in bond dissociation, i.e., 8-9 kcal/mol between the S-H bond in thiophenol and the O-H bond in phenol, H migration at the ortho position in the two molecules represents the most accessible initial channel.  相似文献   

17.
Heats of formation of solid, liquid, and gaseous nitroalkanes have been shown mostly to obey group additivity. Group values have been obtained for carbon atoms attached to one, two, and three nitro groups. The heat of formation of 1,1,1,3,5,5,5,-heptanitropentane, either solid or liquid, cannot be fitted to the scheme, even allowing for gauche effects. The differences between observed and estimated values for 1,1,1-fluorodinitroalkanes and 1,2-dinitroethane are larger than expected and should be further investigated. Activation energies have been calculated for decomposition by five-center elimination of HONO from mononitro- and dinitroalkanes using thermochemistry and estimated activation energies for the reverse reactions. The key data for these estimates were previously reported activation energies for the decomposition of nitroethane and 1,2-dinitropropane. The calculations also gave values for the heats of formation (in kcal/mole) of nitroethylene 12.4, and 1-nitropropylene 5.6, and 2-nitropropylene 1.6. Activation energies were calculated for the competing unimolecular reaction, C? N bond fission, from thermochemistry and previously reported activation energies for the decomposition of 1,1- and 2,2-dinitropropane. Comparison of Arrhenius parameters for the two competing processes, namely, HONO and C? N bond fission, shows that, for the geminate dinitroethanes and dinitropropanes, C? N bond fission is faster about 370°K and, for the mononitroalkanes and for all the mononitroalkanes and dinitroalkanes, C? N bond fission is faster above 770°K.  相似文献   

18.
A systematic theoretical study has been performed on the low pressure thermal decomposition pathways of t-BuS(O)St-Bu using the CCSD(T)/cc-pV(D+d)Z//B3LYP/6-311++G(2d,2p), CCSD(T)/cc-pV(D+d)Z//PBEPBE/6-311++G(2d,2p), and G3B3 level of theories. Rate constants for the unimolecular decomposition pathways are calculated using Rice?Ramsperger?Kassel?Marcus (RRKM) theory. On the basis of the experimental observation and theoretical predictions, the pyrolysis channels are considered as primary and secondary pyrolysis reactions. The primary decomposition via a five-membered transition state leads to the formation of tert-butanethiosulfoxylic acid (t-BuSSOH) and 2-methylpropene (C4H8) almost exclusively having low-pressure limit rate constant k(1)(0) = 4.67 × 10(?6)T(?4.67) exp(?11.64 kcal mol(?1)/RT) cm3 mol(?1) s(?1) (T = 500?800 K). The primary decomposition via a six-membered transition state is also identified, and that leads to the tert-butanethiosulfinic acid t-BuS(OH)S, which is the branched chain isomer of t-BuSSOH. The formation of t-BuSSOH is thermodynamically as well as kinetically favorable over t-BuS(OH)S formation, and therefore the second product could not be found experimentally. Furthermore, calculation on secondary pyrolysis pathways involving the decomposition of t-BuSSOH leads to the formation of 1-oxatrisulfane (trans-HSSOH and cis-HSSOH) and their branched isomer S(SH)OH. These three secondary product formation rates are competitive, but thermodynamics do not favor the formation of the branched isomer. Among the secondary pyrolysis products, trans-HSSOH is the most stable one, and its formation rate constant at low pressure is calculated to be k(3)(0) = 5.49 × 10(28)T(?10.70) exp(?36.22 kcal mol(?1)/RT) cm3 mol(?1) s(?1) (T = 800?1500 K). Finally, the secondary pyrolysis pathway from less stable product t-BuS(OH)S is also predicted, and that leads to trans-HSSOH and cis-HSSOH products with almost equal rates. A bond-order analysis using Wiberg bond indexes obtained by natural bond orbital (NBO) calculation predicts that the primary and secondary pyrolysis of t-BuS(O)St-Bu occur via E1-like mechanism.  相似文献   

19.
The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).  相似文献   

20.
We report on a theoretical study of the gas-phase decomposition of boron trichloride in the presence of hydrogen radicals using ab initio energetic calculations coupled to TST, RRKM, and VTST-VRC kinetic calculations. In particular, we present an addition-elimination mechanism (BCl(3) + H → BHCl(2) + Cl) allowing for a much more rapid consumption of BCl(3) than the direct abstraction reaction (BCl(3) + H → BCl(2) + HCl) considered up to now. At low temperatures, T ≤ 800 K, our results show that a weakly stabilized complex BHCl(3) is formed with a kinetic law compatible with the consumption rate measured in the former experiments. At higher temperatures, this complex is not stable and then easily eliminates a chlorine atom. Our work also shows that a very similar mechanism, involving the same intermediate and sharing the same transition state, allows for the elimination of HCl. A dividing coefficient between these two elimination pathways is obtained from both a potential energy surface based statistical analysis and an ab initio molecular dynamics transition path sampling simulation. It finally allows partitioning of the global consumption rate of BCl(3) in terms of the formation of (i) BHCl(3), (ii) BHCl(2) + Cl through a H addition/Cl elimination mechanism, (iii) BCl(2) + HCl through a H addition/HCl elimination mechanism, and (iv) BCl(2) + HCl through direct abstraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号