首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tan SS  Teo YN  Kool ET 《Organic letters》2010,12(21):4820-4823
To explore a new modular metal ion sensor design strategy, fluorophores and ligands were incorporated into short DNA-like oligomers. Compound 1 was found to function as a selective sensor for Ag(+) in aqueous buffer, where low micromolar concentrations of Ag(+) induce a red-shifted, turn-on fluorescence signal. Experiments with HeLa cells show that 1 can penetrate cells and yield a signal for intracellular Ag(+). This suggests a broadly applicable approach to developing sensors for a wide variety of cations.  相似文献   

2.
The focus of this study was to demonstrate that, in the luminescent sensors, the signal transduction may possibly be the most important part in the sensing process. Rational design of fluorescent sensor arrays for cations utilizing extended conjugated chromophores attached to 8-hydroxyquinoline is reported. All of the optical sensors utilized in the arrays comprise the same 8-hydroxyquinoline (8-HQ) receptor and various conjugated chromophores to yield a different response to various metal cations. This is because the conjugated chromophores attached to the receptor are partially quenched in their resting state, and upon the cation coordination by the 8-HQ, the resulting metalloquinolinolate complex displays a change in fluorescence. A delicate balance of conjugation, fluorescence enhancement, energy transfer, and a heavy metal quenching effect results in a fingerprint-like pattern of responses for each sensor-cation complex. Principal component analysis (PCA) and linear discriminant analysis (LDA) are used to demonstrate the contribution of individual sensors within the array, information that may be used to design sensor arrays with the smallest number of sensor elements. This approach allows discriminating between 10 cations by as few as two or even one sensor element. Examples of arrays comprising various numbers of sensor elements and their utility in qualitative identification of Ca(2+), Mg(2+), Cd(2+), Hg(2+), Co(2+), Zn(2+), Cu(2+), Ni(2+), Al(3+), and Ga(3+) ions are presented. A two-member array was found to identify 11 analytes with 100% accuracy. Also the best two of the sensors were tested alone and both were found to be able to discriminate among the samples with 99% and 96% accuracy, respectively. To illustrate the utility of this approach to a real-world application, identification of enhanced soft drinks based on their Ca(2+), Mg(2+), and Zn(2+) cation content was performed. The same approach to reducing array elements was used to construct three- and two-member arrays capable of identifying these complex analytes with 100% accuracy.  相似文献   

3.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1998,47(2):377-385
Ribonucleic acid (RNA) is used as a novel ionophore in plasticized poly(vinyl chloride) matrix membrane sensors for some transition metal ions. Membranes incorporating RNA and doped in Cu(2+), Cd(2+) and Fe(2+) display fast near-Nernstian and stable responses for these ions with cationic slopes of 31.1, 31.3 and 35.5 mV per decade, respectively, over the concentration range 10(-6)-10(-2) M and pH range 4-6.5. The cadmium RNA-based sensor shows no interference by Cu(2+), Fe(2+) Hg(2+) and Ag(+), which are known to interfere significantly with the solid-state CdS/Ag(2)S membrane electrode. The copper RNA-based sensor displays general potentiometric characteristics similar to those based on macrocyclic ionophores and organic ion exchangers and has the advantage of a better selectivity for Cu(2+) over some alkaline earth, divalent and transition metal ions. The iron RNA-based membrane sensor exhibits no interference by Hg(2+) and Zn(2+), which are known to interfere with other previously suggested sensors. The nature and composition of the RNA ionophore and its cadmium complex are examined using electrophoresis, Fourier-transform infrared analysis, elemental analysis and X-ray fluorescence techniques.  相似文献   

4.
We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer's chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154 degrees and 140 degrees , respectively. In methanol compounds 1 and 2 had absorption maxima at 360 and 370 nm, respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of 17 monovalent, divalent, and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with 10 of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au(+), Au(3+)), strong quenching (Cu(2+), Ni(2+), Pt(2+)), and substantial enhancements in emission intensity coupled with red shifts (Ag(+), Cd(2+), Zn(2+)). The greatest spectral changes for ligand-nucleoside 2 included a red shift in fluorescence (Ag(+)), a blue shift (Cd(2+)), strong quenching (Pd(2+), Pt(2+)), and substantial enhancements in emission intensity coupled with a blue shift (Zn(2+)). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs.  相似文献   

5.
Oligodeoxyfluorosides (ODFs) are short DNA-like oligomers in which DNA bases are replaced with fluorophores. A preliminary study reported that some sequences of ODFs were able to respond to a few organic small molecules in the vapor phase, giving a change in fluorescence. Here, we follow up on this finding by investigating a larger range of volatile organic analytes, and a considerably larger set of sensors. A library of tetramer ODFs of 2401 different sequences was prepared by using combinatorial methods, and was screened in air for fluorescence responses to a set of ten different volatile organics, including multiple aromatic and aliphatic compounds, acids and bases, varied functional groups, and closely related structures. Nineteen responding sensors were selected and characterized. These sensors were cross-screened against all ten analytes, and responses were measured qualitatively (by changes in color and intensity) and quantitatively (by measuring ΔR, ΔG, and ΔB values averaged over five to six sensor beads; R=red, G=green, B=blue). The results show that sensor responses were diverse, with a single sensor responding differently to as many as eight of the ten analytes; multiple classes of responses were seen, including quenching, lighting-up, and varied shifts in wavelength. Responses were strong, with raw ΔR, ΔG, and ΔB values of as high as >200 on a 256-unit scale and unamplified changes in many cases apparent to the naked eye. Sensors were identified that could distinguish clearly between even very closely related compounds such as acrolein and acrylonitrile. Statistical methods were applied to select a small set of four sensors that, as a pattern response, could distinguish between all ten analytes with high confidence. Sequence analysis of the full set of sensors suggested that sequence/order of the monomer components, and not merely composition, was highly important in the responses.  相似文献   

6.
Bright FV  Poirier GE  Hieftje GM 《Talanta》1988,35(2):113-118
A fluorimetric ion sensor based on fiber optics has been developed that employs Rhodamine 6G hydrophobically and electrostatically "trapped" on a Nafion film. The sensor is based on the measurement of quenching or enhancement of the Rhodamine 6G fluorescence by various ions. It was found that ions such as Co(2+), Cr(3+), Fe(2+), Fe(3+), Cu(2+), Ni(2+) and NH(+)(4) rapidly quench the Rhodamine 6G fluorescence at an initial rate that depends on the concentration of the ion. This quenching is then readily reversed by the addition of "reverser" ions such as H(+), Li(+), Na(+), K(+), Ba(2+), Ca(2+), Mn(2+), Zn(2+) and Mg(2+). Again, the initial rate for the attainment of the original fluorescence was found to depend on the concentration of the reverser ion. Therefore, by monitoring the quenching directly the concentration of quencher ions can be determined. In addition, by loading the film with quencher and monitoring the initial rate of return towards the original baseline signal, it is possible to determine non-quenching ions.  相似文献   

7.
A new fluorescent peptidyl chemosensor based on the mercury binding MerP protein with fluorescence resonance energy transfer (FRET) capabilities has been synthesized via Fmoc solid-phase peptide synthesis. The metal chelating unit, which is flanked by the fluorophores tryptophan (donor) and dansyl (acceptor), contains amino acids from MerP's metal binding loop (sequence: dansyl-Gly-Gly-Thr-Leu-Ala-Val-Pro-Gly-Met-Thr-Cys-Ala-Ala-Cys-Pro-Ile-Thr-Val-Lys-Lys-Gly-Gly-Trp-CONH(2)). A FRET enhancement or 'turn-on' response was observed for Hg(2+) as well as for Zn(2+), Cd(2+) and Ag(+) in a pure aqueous solution at pH 7.0. The emission intensity of the acceptor was used to monitor the concentration of these metals ions with detection limits of 280, 6, 103 and 496 microg L(-1), respectively. No response was observed for the other transition, alkali and alkaline earth metals tested. The fluorescent enhancement observed is unique for Hg(2+) since this metal generally quenches fluorescence. The acceptor fluorescence increase resulting from metal binding-induced FRET suggests a sensor that is inherently more sensitive than one based on quenching by the binding event.  相似文献   

8.
Weng YQ  Yue F  Zhong YR  Ye BH 《Inorganic chemistry》2007,46(19):7749-7755
A new copper(II) fluorescent sensor 5,10,15,20-tetra((p-N,N-bis(2-pyridyl)amino)phenyl)porphyrin zinc (1) has been designed and synthesized by the Ullmann-type condensation of bromoporphyrin zinc with 2,2'-dipyridylamine (dpa) under copper powder as a catalyst as well as with K2CO3 as the base in a DMF solution. It consists of two separately functional moieties: the zinc porphyrin performs as a fluorophore, and the dpa-linked-to-zinc porphyrin acts as a selected binding site for metal ions. It displays a high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Fe3+) and exhibits fluorescence quenching upon the binding of the Cu2+ ion with an "on-off"-type fluoroionophoric switching property. The detection limit is found to be 3.3 x 10(-7) M (3s blank) for Cu2+ ion in methanol solution, and its fluorescence can be revived by the addition of EDTA disodium solution. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of fluorescent sensors for metal ions.  相似文献   

9.
Martin D  Rouffet M  Cohen SM 《Inorganic chemistry》2010,49(22):10226-10228
The synthesis, structure, and solution spectroscopy of several (2-sulfonamidophenyl)benzimidazole metal complexes are reported. These ligands, which have been reported as selective molecular sensors for Zn(2+), readily form complexes with Co(2+), Ni(2+), Cu(2+), and Zn(2+). Surprisingly, the ligand adopts different binding modes depending on the metal ion. The work here provides insight into the coordination chemistry of these ligands, which may allow for the development of improved metal-ion sensors and metalloprotein inhibitors.  相似文献   

10.
Novel fluorescent probes have been developed for the ultratrace detection of heavy metal ions by capillary electrophoresis using laser-induced fluorescence detection. Based on a molecular design, the probes are composed of an octadentate chelating moiety, a macrocyclic DOTA (tetraazacyclododecanetetraacetic acid) and an acyclic DTPA (diethylenetriaminepentaacetic acid) frame, a spacer and a fluorophore (fluorescein). These were chosen on the basis of their ability to form kinetically inert and highly emissive complexes, and to prevent a quenching effect even with heavy and paramagnetic metal ions. Addition of a cationic polymer, polybrene, in the separation buffer provided high resolution and simultaneous detection of Ca(2+), Mg(2+), Cu(2+), Zn(2+), Ni(2+), Co(2+), Mn(2+), Cd(2+) and Pb(2+). The direct fluorescence detection of these metal ions with high sensitivity at lower ppt levels, typically 2-7 × 10(-11) M (potentially sub-ppt), was successfully achieved. While separation of anionic compounds using a counter cation ("Ion Association (IA)" mode) is typically controlled by the ion association equilibrium constants, K(ass), it was found that differences in the mobilities, μ(ep(IAC)), of the ion association complexes formed between the probe complexes and counter cations are the driving forces for separation in this new method. This suggests that each of the polybrene-probe complexes has different chemical structures among metal ions, which were able to be determined by CD spectra in this investigation. This novel separation mode was termed the "Ion Association Complex (IAC)" mode, distinct from the IA mode.  相似文献   

11.
Xue L  Wang HH  Wang XJ  Jiang H 《Inorganic chemistry》2008,47(10):4310-4318
We have developed a series of di-2-picolylamine (DPA)-substituted quinoline sensors, HQ1- 4, bearing a pendant ligand at the 8 position of quinoline. UV-vis spectra of HQ1- 4 showed similar variations to that of HQ5 but with different varying extents upon the titration of zinc ions. Fluorescence intensities of HQ1, HQ3, and HQ4 were enhanced 4-6 times upon the addition of 1 equiv of zinc ions under an aqueous buffer. Somewhat unexpectedly, HQ2 is nonfluorescent in the presence of metal ions, including zinc ions. The affinities of HQ sensors are distributed in a broad range from nanomolarity to femtomolarity by varying the pendant ligands near the coordination unit. More importantly, these new sensors exhibited very high selectivity for Zn(2+) over Na(+), K(+), Mg(2+), and Ca(2+) at the millimolar level and over other transition metal ions at the micromolar level, except for Cd(2+). These findings indicated that the incorporations of the pendant groups exerted no effect on the spectroscopic properties and selectivity of the parent fluorescent sensor, with the exception of HQ2. Finally, X-ray crystal structures of ZnHQ's revealed that the auxiliary pendant groups at the 8 position participated in zinc coordination and were able to tune the affinities of HQ sensors.  相似文献   

12.
Brianna R. White  James A. Holcombe   《Talanta》2007,71(5):2015-2020
A new fluorescent peptidyl chemosensor for Cu2+ ions with fluorescence resonance energy transfer (FRET) capabilities has been synthesized via Fmoc solid-phase peptide synthesis. The metal chelating unit, which is flanked by the fluorophores tryptophan (donor) and dansyl chloride (acceptor), consists of the amino acids glycine and aspartic acid (Gly-Gly-Asp-Gly-Gly-Asp-Gly-Gly-Asp-Gly-Gly-Asp-Gly-Gly). Coordination of the Cu2+ ions to the metal chelating unit results in fluorescent quenching of both the donor and acceptor fluorophores. Although it was determined that Cu2+ binding causes no change in FRET efficiency, emission and Cu2+-induced quenching of the acceptor dye can be used to monitor the concentration of the copper ions, with a detection limit of 32 μg L−1. The sensor also demonstrated sensitivity, reversibility and selectivity towards Cu2+ in a transition metal matrix at pH 7.0.  相似文献   

13.
Liu B  Zeng F  Wu G  Wu S 《The Analyst》2012,137(16):3717-3724
The quenching of quantum dots' emission by some analytes (Hg(2+), Pb(2+), etc.) has long been hindering the fabrication of QD-based 'turn-on' or ratiometric fluorescent sensors for these analytes. In this study, we demonstrate a facile solution for constructing a robust FRET-based ratiometric sensor for Hg(2+) detection in water with CdTe QDs as the donor. By using the reverse microemulsion approach, CdTe QDs were first embedded into nanosized silica particles, forming the QDs/silica cores, a positively charged ultrathin spacer layer was then deposited on each QDs/silica core, followed by the coating of a mercury ion probe on the particle surfaces. The resultant multilayered QDs/silica composite nanoparticles are dispersible in HEPES buffered water; and in the presence of mercury ions, the QDs inside the nanoparticles will not be quenched by mercury ions due to the existence of the positively charged spacer layer, but can transfer their excited energy to the acceptors (probe/Hg(2+) complex), thus achieving the FRET-based ratiometric sensing for mercury ions in totally aqueous media. With its detection limit of 260 nM, this QD-based sensor exhibits high selectivity toward mercury ion and can be used in a wide pH range. This strategy may be used to construct QDs-based ratiometric assays for other ions which quench the emission of QDs.  相似文献   

14.
The heavy metal ions,especially Cd~(2+),Pb~(2+) and Hg~(2+),show extremely hazard to the environment and human being.The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity,low-cost,convenience to handle and rapid detection.In recent years,nanomaterials such as gold nanoparticles(NPs),magnetic nanoparticles,graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity,making the research on electrochemical(EC) sensors,spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions,in particular,Cd~(2+),Pb~(2+) and Hg~(2+).In this short review,the research of advanced detection of Cd~(2+),Pb~(2+) and Hg~(2+) and its progress based on nanomaterial sensors in recent years is reviewed.  相似文献   

15.
Ligand-capped gold nanoparticles were synthesized by capping monothiol derivatives of 2,2'-dipyridyl onto the surface of Au nanoparticles (Au-BT). The average size of the metal core is around 4 nm, with a shell of approximately 340 bipyridine ligands around the Au nanoparticle. The high local concentration of the chelating ligands ( approximately 5 M) around the Au nanoparticle makes these particles excellent ion sponges, and their complexation with Eu(III)/Tb(III) ions yields phosphorescent nanomaterials. Absorption spectral studies confirm a 1:3 complexation between Eu(III)/Tb(III) ions and bipyridines, functionalized on the surface of Au nanoparticles. The red-emitting Au-BT:Eu(III) complex exhibits a long lifetime of 0.36 ms with six line-like emission peaks, whereas the green-emitting Au-BT:Tb(III) complex exhibits a lifetime of 0.7 ms with four line-like emission peaks. These phosphorescent nanomaterials, designed by linking BT:Eu(III) complexes to Au nanoparticles, were further utilized as sensors for metal cations. A dramatic decrease in the luminescence was observed upon addition of alkaline earth metal ions (Ca(2+), Mg(2+)) and transition metal ions (Cu(2+), Zn(2+), Ni(2+)), resulting from an isomorphous substitution of Eu(III) ions, whereas the luminescence intensity was not influenced by the addition of Na(+) and K(+) ions. Direct interaction of bipyridine-capped Au nanoparticles with Cu(2+) ions brings the nanohybrid systems closer, leading to the formation of three-dimensional superstructures. Strong interparticle plasmon interactions were observed in these closely spaced Au nanoparticles.  相似文献   

16.
A concept of fluorescent metal ion sensing with an easily tunable emission wavelength is presented and its principle demonstrated by detection of Cu(2+). A fluorescein dye was chemically modified with a metal chelating group and then attached to the terminus of ss-DNA. This was combined with a complementary ss-DNA modified with another fluorescent dye (ATTO 590), emitting at a longer wavelength. In the assembled duplex, fluorescence resonance energy transfer (FRET) between the fluorescein donor (excited at 470 nm) and the ATTO 590 acceptor (emitting at 624 nm) is observed. Proper positioning within the rigid DNA double helix prevents intramolecular contact quenching of the two dyes. Coordination of paramagnetic Cu(2+) ions by the chelating unit of the sensor results in direct fluorescence quenching of the fluorescein dye and indirect (by loss of FRET) quenching of the ATTO 590 emission at 624 nm. As a result, emission of the acceptor dye can be used for monitoring of the concentration of Cu(2+), with a 20 nM detection limit. The emission wavelength is readily tuned by replacement of ATTO-DNA by other commercially available DNA-acceptor dye conjugates. Fluorescent metal ion sensors emitting at >600 nm are very rare. The possibility of tuning the emission wavelength is important with respect to the optimization of this sensor type for application to biological samples, which usually show broad autofluorescence at <550 nm.  相似文献   

17.
Increased preorganization can be achieved by immobilizing ligands on solid supports. Photoluminescent porous silicon, which can undergo facile hydrosilylation, was used as a support for open chain neutral N- and O-donor ligands. The abilities of these ligands to bind the divalent metal ions Ni(2+), Cu(2+), Zn(2+), and Pb(2+) are examined. Immobilized ligands selectively complexed Cu(II) over the other metal ions studied. Ligands immobilized on photoluminescent porous silicon also removed a significant amount, up to 98%, of Cu(II) from copper(II)-spiked, organic-rich, seawater samples.  相似文献   

18.
The control of peroxyoxalate chemiluminescence (PO-CL) by the coordination of nitrogen-containing ligands and metal cations was investigated. Turning the CL off and on was done by PO-CL using 15-monoazacrown-5-tethered anthracene and alkali metal ions. CL quenching and regeneration was also observed in the separated molecular system of 15-monoazacrown-5 and the fluorophores. CL quenching by a number of ligands bearing dipicolylamino groups was evaluated by these PO-CL reactions and found to be closely related to their oxidation potentials, which is dependent on the Weller rate law for electron exchange and this provides strong support for the existence of the CIEEL PO-CL process. When Zn2+ or Cu2+ are added to the PO-CL system quenched by the ligand, N-[2-(2,2′-dipicolylamino)ethyl]aniline, CL was turned on because the electron donating ability of the ligands was modulated. This was controlled by the coordination of the studied metal ions and, therefore, this system results in CL because of host-guest interactions.  相似文献   

19.
In this review, we summarize the number of scientific publications in the field of FP/FA sensor in recent five years, and introduce the recent progress of FP/FA sensor based on nanomaterial. The various analytical applications of FP/FA sensor based on nanomaterial are discussed. We also provide perspectives on the current challenges and future prospects in the promising field.  相似文献   

20.
《中国化学快报》2019,30(9):1575-1580
As a promising signaling transduction approach, fluorescence polarization (FP)/fluorescence anisotropy (FA), provides a powerful quantitative tool for the rotational motion of fluorescently labeled molecules in chemical or biological homogeneous systems. Unlike fluorescence intensity, FP/FA is almost independent the concentration or quantum of fluorophores, but they are highly dependent on the size or molecular weight of the molecules or materials attached to fluorophores. Recently, significant progress in FP/FA was made, due to the introduction of some nanomaterials as FP/FA enhancers. The detection sensitivity is thus greatly improved by using nanomaterials as FP/FA enhancers, and nanomaterial-based FP/FA is currently used successfully in immunoassay, and analysis of protein, nucleic acid, small molecule and metal ion. Nanomaterial-based FP/FA provides a new kind of strategy to design fluorescent sensors and establishes innovative analytical methods. In this review, we summarize the scientific publications in the field of FP/FA sensor in recent five years, and first introduce the recent progress of FP/FA sensor based on nanomaterial. Subsequently, the various analytical applications of FP/FA based on nanomaterial are discussed. Finally, we provide perspectives on the current challenges and future prospects in this promising field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号