首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The synthesis and characterization of the complexes [NiCl(SeAr)(DPPE)] (1) and [Ni(SeAr)2(DPPE)] (2) (where Ar = C6H5 (a), 4-MeOC6H4 (b) or 4-EtOC6H4 (c), and DPPE = 1,2-bis(diphenylphosphino)-ethane) is reported. Characterization of the compounds was based on elemental analysis, molecular weight and conductivity measurements, IR, electronic, 1H and 31P NMR spectra. Available evidence supports a square planar environment around Ni(II) in 1 and 2. Metathetical reaction between 1b and NaX (X = Br (d) or I (e)) in MeOH gives [NiX(SeAr)(DPPE)] (3). Electrochemical studies of 1 and 2 using cyclic voltammetry indicate an irreversible cathodic peak (ca ?0.56 to ?0.70 V) corresponding to reduction of nickel(II) to nickel (O).  相似文献   

2.
Nickel(II) chalcogenolate complexes [Ni(L-L)2(dppe) Cl2] (1, 2) have been prepared in high yields by reacting 1,2-diarylchalcogenolato-o-xylene, o-C6H4(CH2EAr)2 (E = Se or Te; Ar = Ph, C6H4OMe-4 and C6H4OEt-4), generated in situ, with Ni(dppe)Cl2 [dppe = 1,2-bis(diphenylphosphino)ethane] in benzene. The structures were established by elemental analyses, molar conductance, i.r. and Raman, electronic 1H- and 31P-n.m.r. and mass spectral data. The analytical and spectroscopic data are consistent with an octahedral geometry around nickel in (1) and (2). The 31P-n.m.r. spectra indicate their cis configuration in solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
NHC-nickel (NHC=N-heterocyclic carbene) complexes are efficient catalysts for the C−Cl bond borylation of aryl chlorides using NaOAc as a base and B2pin2 (pin=pinacolato) as the boron source. The catalysts [Ni2(ICy)4(μ-(η22)-COD)] ( 1 , ICy=1,3-dicyclohexylimidazolin-2-ylidene; COD=1,5-cyclooctadiene), [Ni(ICy)22-C2H4)] ( 2 ), and [Ni(ICy)22-COE)] ( 3 , COE=cyclooctene) compare well with other nickel catalysts reported previously for aryl-chloride borylation with the advantage that no further ligands had to be added to the reaction. Borylation also proceeded with B2neop2 (neop=neopentylglycolato) as the boron source. Stoichiometric oxidative addition of different aryl chlorides to complex 1 was highly selective affording trans-[Ni(ICy)2(Cl)(Ar)] (Ar=4-(F3C)C6H4, 11 ; 4-(MeO)C6H4, 12 ; C6H5, 13 ; 3,5-F2C6H3, 14 ).  相似文献   

4.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

5.
A series of new indanimine ligands [ArN?CC2H3(CH3)C6H2(R)OH] (Ar = Ph, R = Me ( 1 ), R = H ( 2 ), and R = Cl ( 3 ); Ar = 2,6‐i‐Pr2C6H3, R = Me ( 4 ), R = H ( 5 ), and R = Cl ( 6 )) were synthesized and characterized. Reaction of indanimines with Ni(OAc)2·4H2O results in the formation of the trinuclear hexa(indaniminato)tri (nickel(II)) complexes Ni3[ArN = CC2H3(CH3)C6H2(R)O]6 (Ar = Ph, R = Me ( 7 ), R = H ( 8 ), and R = Cl ( 9 )) and the mononuclear bis(indaniminato)nickel (II) complexes Ni[ArN?CC2H3(CH3)C6H2(R)O]2 (Ar = 2,6‐i‐Pr2C6H3, R = Me ( 10 ), R = H ( 11 ), and R = Cl ( 12 )). All nickel complexes were characterized by their IR, NMR spectra, and elemental analyses. In addition, X‐ray structure analyses were performed for complexes 7 , 10 , 11 , and 12 . After being activated with methylaluminoxane (MAO), these nickel(II) complexes can polymerize norbornene to produce addition‐type polynorbornene (PNB) with high molecular weight Mv (106 g mol?1), highly catalytic activities up to 2.18 × 107 gPNB mol?1 Ni h?1. Catalytic activities and the molecular weight of PNB have been investigated for various reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 489–500, 2008  相似文献   

6.
Self‐immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN?C]2(C10H6)NiBr2 [Ar = 4‐allyl‐2,6‐(i‐Pr)2C6H2] ( 1 ), [ArN?C(Me)][Ar′N? C(Me)]C5H3NFeCl2 [Ar = Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3, Ar = 2,6‐(i‐Pr)2C6H3, and Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN?C]2C10H6NiBr2 (Ar = 2,6‐(i‐Pr)2C6H2)], but also greatly improved the morphology of polymer particles to afford micron‐granula polyolefin. The self‐immobilization of catalysts, the formation mechanism of microspherical polymer, and the influence on the size of the particles are discussed. The molecular structure of self‐immobilized nickel catalyst 1 was also characterized by crystallographic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1018–1024, 2004  相似文献   

7.
The reaction of the intramolecular germylene-phosphine Lewis pair (o-PPh2)C6H4GeAr* ( 1 ) with Group 15 element trichlorides ECl3 (E=P, As, Sb) was investigated. After oxidative addition, the resulting compounds (o-PPh2)C6H4(Ar*)Ge(Cl)ECl2 ( 2 : E=P, 3 : E=As, 4 : E=Sb) were reduced by using sodium metal or LiHBEt3. The molecular structures of the phosphine-stabilized phosphinidene (o-PPh2)C6H4(Ar*)Ge(Cl)P ( 5 ), arsinidene (o-PPh2)C6H4(Ar*)Ge(Cl)As ( 6 ) and stibinidene (o-PPh2)C6H4(Ar*)Ge(Cl)Sb ( 7 ) are presented; they feature a two-coordinate low-valent Group 15 element. After chloride abstraction, a cyclic germaphosphene [(o-PPh2)C6H4(Ar*)GeP] [B(C6H3(CF3)2)4] ( 8 ) was isolated. The 31P NMR data of the germaphosphene were compared with literature examples and analyzed by quantum chemical calculations. The phosphinidene was treated with [iBu2AlH]2, and the product of an Al−H addition to the low-valent phosphorus atom (o-PPh2)C6H4(Ar*)Ge(H)P(H)Al(C4H9)2 ( 9 ) was characterized.  相似文献   

8.
A series of salicylaldimine‐based neutral Ni(II) complexes (3a–j) [ArN = CH(C6H4O)]Ni(PPh3)Ph [3a, Ar = C6H5; 3b, Ar = C6H4F(o); 3c, Ar = C6H4F(m); 3d, Ar = C6H4F(p); 3e, Ar = C6H3F2(2,4); 3f, Ar = C6H3F2(2,5); 3g, Ar = C6H3F2(2,6); 3h, Ar = C6H3F2(3,5); 3i, Ar = C6H2F3(3,4,5); 3j, Ar = C6F5] have been synthesized in good yield, and the structures of complexes 3a and 3i have been confirmed by X‐ray crystallographic analysis. Using modified methylaluminoxane as a cocatalyst, these neutral Ni(II) complexes exhibited high catalytic activities for the vinylic polymerization of norbornene. It was observed that the strong electron‐withdrawing effect of the fluorinated salicylaldiminato ligand was able to significantly increase the catalyst activity for vinylic polymerization of norbornenes. In addition, catalyst activity, polymer yield and polymer molecular weight can also be controlled over a wide range by the variation of reaction parameters such as Al:Ni ratio, norbornene:catalyst ratio, monomer concentration, polymerization temperature and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The hydroxo complex (Bu4N)2[Ni2(C6F5)4(μ-OH)2]reacts with 2,3,4,5,6-pentafluoro benzenamine (C6F5-NH2), 1,3-diaryltriaz-1-enes (ArNH? N=N? Ar, Ar = Ph, 4-MeC6H4, 4-MeOC6H4), 7-aza-1H-indole (= 1H-pyrrolo[2.3-b]pyridine; Hazind), N-phenylpyridin-2-amine(pyNHPh), and N-phenylpyridine-2-carboxamide (py-CONHPh) at room temperature in acetone to give the binuclear complexes (Bu4N)2[Ni2(C6F5)4(μ-C6F5NH)2] ( 1 ) and (Bu4N)2[{Ni(C6F5)2} 2(μ-OH)(μ-azind)] ( 2 ) and the mononuclear complexes Bu4N[Ni(C6F5)2(ArN3Ar)] ( 3 – 5 ), Bu4N[Ni(C6F5)2(pyNPh)] ( 6 ), and Bu4N[Ni(C6F5)2(pyCONPh)] ( 7 ). The hydroxo.complex (Bu4N)2[{Ni(C6F5)2-(μ-OH)}2] promotes the nucleophilic addition of water to pyridine-2-carbonitrile, 2-aminoacetonitrile, and 2-(dimethylamino)acetonitrile, and complexes 8 – 10 containing pyridine-2-carboxamidato, 2-aminoacetamidato and 2-(dimethylamino)acetamidato ligands are formed. Analytical (C, H, N) and spectroscopic (IR, 1H and 19F-NMR, and FAB-MS) data were used for structural assignments. A single-crystal X-ray diffraction study of (Bu4N)2[{Ni(C6F5)2}2(μ-OH)(μ-azind)] ( 2 ) established the binuclear nature of the anion; the two Ni-atoms are bridged by an OH group and a 7-aza-7H-indol-7-yl group, but the central Ni? O? Ni? N? C? N ring is not planar, the dihedral angle between the Ni? O? Ni and Ni? N? C? N? Ni planes being 84.4°.  相似文献   

10.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

11.
Synthesis and Characterization of Aquapentachloroplatinates(IV) – Structure of [K(18-crown-6)][PtCl5(H2O)] The crown ether complex of the aquapentachloroplatinic acid of the composition [H13O6][PtCl5(H4O2)] · 2(18-cr-6) ( 2 ) reacts with K2CO3 and [NnBu4]OH in aqueous solution to give [K(18-cr-6)][PtCl5(H2O)] ( 5 a ) and [NnBu4][PtCl5(H2O)] · 1/2 (18-cr-6) · H2O ( 5 b ), respectively. Both compounds were characterized by microanalysis, vibrational (IR, Raman) and NMR (1H, 13C, 195Pt) spectroscopy. The X-ray structure analysis of 5 a (orthorhombic, pnma; a = 16,550(4), b = 18,044(3), c = 7,415(1) Å; Z = 4; R1 = 0,0183; wR2 = 0,0414) reveals that the crystal is threaded by chains built up of [PtCl5(H2O)]? and [K(18-cr-6)]+ units. There are tight K …? Cl contacts (d(K? Cl1)) = 3,0881(9) Å and OW? H? Ocr hydrogen bridges (d(O1 …? O2) = 2,806(3) Å) between these units. The coordination polyhedron [PtCl5O] has approximately C4v symmetry.  相似文献   

12.
The synthesis, characterization and methyl methacrylate polymerization behaviors of 2‐(N‐arylimino)pyrrolide nickel complexes are described. The nickel complex [NN]2Ni ( 1 , [NN] = [2‐C(H)NAr‐5‐tBu‐C4H2N]?, Ar = 2,6‐iPr2C6H3) was prepared in good yield by the reaction of [NN]Li with trans‐[Ni(Cl)(Ph)(PPh3)2] in THF. Reaction of [NN]Li with NiBr2(DME) yielded the nickel bromide [NN]Ni(Br)[NNH] ( 2 ). Complexes 1 and 2 were characterized by 1H NMR and IR spectroscopy and elemental analysis, and by X‐ray single crystal analysis. Both complexes, upon activation with methylaluminoxane, are highly active for the polymerization of methyl methacrylate to give high molecular weight polymethylmethacrylate with narrow molecular distributions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Seven square planar bis(o-diiminobenzosemiquinonato)nickel(II) complexes, [Ni(o-C6H4(NH)(NAr))2] (Ar= Mes, 1; p-F-C6H4, 2; p-CI-C6H4, 3), [Ni(o-4,5-F2-C6H2(NH)(NPh))2] (4), and [Ni(o-4,5-CIz-C6H2(NH)(NAr))2] (Ar =Ph, 5; 2,6-F2-C6H3, 6; 2,6-C12-C6H3, 7), have been synthesized and characterized by 1H NMR, 13C NMR, 19F NMR, IR, UV-Vis-NIR, elemental analyses, HRMS, as well as single-crystal X-ray diffraction studies (1 and 7). The cyclic voltammograms of these complexes exhibit two reversible redox processes of [NiLe]0n- and [NIL2]l /2 , and one irreversible process of [NiL2]~n+. Substituent effects on the redox properties of these complexes, in addi- tion with those of the known complexes [Ni(o-C6Ha(NH)(NPh))2] (8) and [Ni(o-3,5-Butz-C6Hz(NH)2)2] (9), are identified by comparing the half-wave potentials of the reduction waves, as 1 ~ 9 〈 8 ~ 2 〈 3 〈 4 〈 5 〈 7 〈 6, reflect- ing the ease of reduction of [NIL2] parallels the electron-donating and -withdrawing ability of the substituent group. Reduction of 1 with one or two equivalents of sodium metal in THF has led to the isolation of [Na(THF)3][I] and [Na(THF)3]2[1]. The structure data of these two complexes revealed by low-temperature X-ray crystallography suggest their corresponding electronic structures of [Nill(lL-1 )(IL2-)]1- and [Ni1](1L2 )212-, which are in line with those of [9]n (n = 1-, 2-) suggested by spectroelectrochemical study.  相似文献   

14.
NiII mixed-ligand complexes of compositions [Ni(pmdien)(ttcH)] (1), [Ni(baphen)2(ttcH)] · 4H2O (2), [Ni-(dpa)(ttcH)(H2O)] (3), [Ni(cyclam)(ttcH)] · 2H2O (4), [Ni(hexaa)](ttcH) (5) and [Ni(hexab)(ttcH)] · 2H2O (6), (baphen = 4,7-diphenyl-1,10-phenanthroline, dpa = 2,2-dipyridylamine, cyclam = 1,4,8,11-tetraazacyclotetradecane, hexaa = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]-octadecane, hexab = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane) have been prepared and characterized by means of i.r., u.v.–vis. spectroscopies and magnetochemical measurements. The redox properties of the complexes were studied by cyclic voltammetry. The crystal and molecular structure of [Ni(pmdien)(ttcH)] was determined. The nickel atom is penta-coordinated by three N atoms of pmdien, and by S and N atoms of trithiocyanurate(2–) anion.  相似文献   

15.
Treatment of complexes of the type [M(CO)4{(Ph2P)2CCH2}] (M = W, Mo or Cr) with functionalized lithium reagents, LiR, followed by hydrolysis gives complexes of the type [M(CO)4{PH2P)2CHCH2R}] in high yields; R = C6H4Me-4, C6H4OMe-2, C6H3(OMe)2-2,6, C6H4OH-2, C6H4(COOH)-2, CH2COPh or CH2COMe. IR, and 31P and 1H NMR data are given.  相似文献   

16.
The one‐dimensional chain catena‐poly­[[aqua(2,2′:6′,2′′‐terpyridyl‐κ3N)­nickel(II)]‐μ‐cyano‐κ2N:C‐[bis­(cyano‐κC)nickelate(II)]‐μ‐cyano‐κ2C:N], [Ni(terpy)(H2O)]‐trans‐[Ni‐μ‐(CN)2‐(CN)2]n or [Ni2­(CN)4­(C15H11N3)(H2O)], consists of infinite linear chains along the crystallographic [10] direction. The chains are composed of two distinct types of nickel ions, paramagnetic octahedral [Ni(terpy)(H2O)]2+ cations (with twofold crystallographic symmetry) and diamagnetic planar [Ni(CN)4]2? anions (with the Ni atom on an inversion center). The [Ni(CN)4]2? units act as bidentate ligands bridging through two trans cyano groups thus giving rise to a new example of a transtrans chain among planar tetra­cyano­nickelate complexes. The coordination geometry of the planar nickel unit is typical of slightly distorted octahedral nickel(II) complexes, but for the [Ni(CN)4]2? units, the geometry deviates from a planar configuration due to steric interactions with the ter­pyridine ligands.  相似文献   

17.
A bis(phosphine)borane ambiphilic ligand, [Fe(η5‐C5H4PPh2)(η5‐C5H4PtBu{C6H4(BPh2)‐ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] ( 1 ) in which the arylborane is η3BCC‐coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6‐dimethylphenyl) afforded [PtL(FcPPB)] {L=CO ( 2 ) and CNXyl ( 3 )} featuring η2BC‐ and η1B‐arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(μ‐H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2H to [Pt(FcPPB)] afforded [Pt(C2Ph)(μ‐H)(FcPPB)] ( 5 ), which rapidly converted to [Pt(FcPPB′)] ( 6 ; FcPPB′=[Fe(η5‐C5H4PPh2)(η5‐C5H4PtBu{C6H4(BPh‐CPh=CHPh‐Z)‐ortho}]) in which the newly formed vinylborane is η3BCC‐coordinated. Unlike arylborane complex 1 , vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2Ph at room temperature.  相似文献   

18.
Formal [2 + 2 + 2] addition reactions of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with PhC?CR (R = H, COOEt) give [Cp*Ru(η6‐C6H5? C9H8R)] BF4 (1a, R = H; 2a, R = COOEt). Treatment of [Cp*Ru(H2O)(NBD)]BF4 with PhC?C? C?CPh does not give [2 + 2 + 2] addition product, but [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BF4(3a). Treatment of 1a, 2a, 3a with NaBPh4 affords [Cp*Ru(η6‐C6H5? C9H8R)] BPh4 (1b, R = H; 2b, R = COOEt) and [Cp*Ru(η6‐C6H5? C?C? C?CPh)] BPh4(3b). The structures of 1b, 2b and 3b were determined by X‐ray crystallography. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Five crystalline 2-(dimethylsila)pyrimidine derivatives (Z) have been prepared in excellent 14 or satisfactory 5 yield and characterised. The source of each was ultimately Li[CH(SiMe2R)(SiMe2OMe)] [R = Me (B) or OMe (I)]. Compound 1 (Z with Ar = Ph, X = SiMe3, n = 1) was obtained from Z [with Ar = Ph, X = Li(OEt2), n = 4; previously isolated from B [P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 689 (2004) 1342]] and Me3SiCl. The potassium salt 2 [Z with Ar = C6H4But-4; X = K(thf)3, n = 2] was made from K[CH(SiMe3)(SiMe2OMe)] (C) (via B) and 4-ButC6H4CN. Treatment of 2 with 1,2-dibromoethane afforded 3 (Z with Ar = 4-ButC6H4; X = H, n = 1); which when reacted with successively n-butyllithium and Me3SiCl produced 4 (Z with Ar = 4-ButC6H4, X = SiMe3, n = 1). Compound 5 [Z with Ar = 4-ButC6H4, X = Li(hmpa)2, n = 1] resulted from I with 4-ButC6H4CN and then OP(NMe2)3 (≡ hmpa). Plausible reaction pathways from the appropriate alkali metal alkyl C or I to 2 or 5, respectively, are suggested; these involve regiospecific 1,3-migrations of SiMe2OMe from C → N and electrocyclic loss of Me3SiOMe or SiMe2(OMe)2, respectively. The X-ray structures of crystalline 1, 2 and 5 are presented.  相似文献   

20.
Summary The complex [Tc(PPh3)2(CO)3Cl] reacts with the lithium salt of amido-carboxylato- and thiazolato-derivatives to give the new complexes (Ar= C6H4Me-p or C6H4OMe-p), [Tc(PPh3)2(CO)2(amt1,2)] [amt1=anion of 2-(methylamino)thiazole; amt2=anion of 2-4-methoxyphenylamino(thiazole)] and [Tc(PPh3)2(CO)2- (R = Ph2CH, PhCH2 or CCl3). The compounds have been characterized by elemental analysis, and i.r. and1H n.m.r. spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号