共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Stimuli‐responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi‐stimuli‐responsive polymer materials have been designed and developed in recent years. Compared with conventional single‐ or dual‐stimuli‐based polymer materials, multi‐stimuli‐responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi‐stimuli‐responsive polymer materials, namely, multi‐stimuli‐responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi‐stimuli‐responsive films (polymer brushes, layer‐by‐layer polymer films, and porous membranes), and multi‐stimuli‐responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi‐stimuli‐responsive particles, films, and bulk gels are comprehensively discussed here. 相似文献
4.
Dr. Jeonghun Kim Dr. Byeonggwan Kim Dr. Chokkalingam Anand Dr. Ajayan Mano Dr. Javaid S. M. Zaidi Dr. Katsuhiko Ariga Dr. Jungmok You Prof. Dr. Ajayan Vinu Prof. Dr. Eunkyoung Kim 《Angewandte Chemie (International ed. in English)》2015,54(29):8407-8410
The single‐step preparation of highly ordered mesoporous silica hybrid nanocomposites with conjugated polymers was explored using a novel cationic 3,4‐propylenedioxythiophene (ProDOT) surfactant (PrS). The method does not require high‐temperature calcination or a washing procedure. The combination of self‐assembly of the silica surfactant and in situ polymerization of the ProDOT tail is responsible for creation of the mesoporosity with ultralarge pores, large pore volume, and electroactivity. As this novel material exhibits excellent textural parameters together with electrical conductivity, we believe that this could find potential applications in various fields. This novel concept of creating mesoporosity without a calcination process is a significant breakthrough in the field of mesoporous materials and the method can be further generalized as a rational preparation of various mesoporous hybrid materials having different structures and pore diameters. 相似文献
5.
Manuela Melucci Dr. Massimo Zambianchi Alberto Zanelli Dr. Nadia Camaioni Dr. Massimo Gazzano Dr. Alessandro Bongini Prof. Dr. Giovanna Barbarella Dr. 《Chemphyschem》2007,8(18):2621-2626
A soluble, low‐weight fraction of poly(α‐vinyl,ω‐n‐hexyl‐quaterthiophene), PT4Hex, having n‐hexylquaterthiophenes as side‐chain groups, is prepared by free‐radical polymerization of α‐vinyl,ω‐n‐hexyl‐quaterthiophene and the corresponding properties compared to those of free di‐n‐hexylquaterthiophene (T4Hex). Optical analysis (absorption and emission) and X‐ray diffraction data indicate that in the polyvinyl‐locked architecture the quaterthiophene pendants adopt a cofacial arrangement with a mutual distance close enough for π–π orbitals to overlap (~4 Å). As a consequence of the close chain packing, a shift of the reduction potential of about 0.5 V toward less negative values with respect to free T4Hex, is found for PT4Hex films. Due to its enhanced electron affinity, PT4Hex displays an electron‐acceptor behavior when blended with alkylated and silylated quaterthiophenes acting as donors. 相似文献
6.
Cosmin Laslau Zoran D. Zujovic Jadranka Travas‐Sejdic 《Macromolecular rapid communications》2009,30(19):1663-1668
The identification and control of a critical stage of polyaniline “nanotube” self‐assembly is presented, namely the granular agglomeration or growth onto nanorod templates. When the synthesis pH is held above 2.5, smooth insulating nanorods exhibiting hydrogen bonding and containing phenazine structures are produced, while below pH 2.5, small 15–30 nm granular polyaniline nanoparticles appear to agglomerate onto the available nanorod surface, apparently improving conductivity of the resulting structures by three orders of magnitude. This finding affects both fundamental theories of polyaniline nanostructure self‐assembly and their practical applications.
7.
Yong Yan Jin Fang Yajie Zhang Huili Fan Zhixiang Wei 《Macromolecular rapid communications》2011,32(20):1640-1644
Self‐assembly of two‐dimensional (2D) structures from functional molecules is of great scientific importance. Herein, using a typical linear conducting polymer, polyaniline as building blocks, 2D single crystalline microplates are successively produced. The structure of 2D microplates is clearly defined by selected area electron diffraction, X‐ray diffraction, and Raman spectroscopy. Owing to the anisotropic arrangement of linear conjugated PANI molecules, the microplate shows a typical anisotropic electrical transport property.
8.
Yingxi Lu Wei Hu Ying Ma Lianbin Zhang Junqi Sun Nan Lu Jiacong Shen 《Macromolecular rapid communications》2006,27(7):505-510
Summary: Polyelectrolyte multilayer films of poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) and PAH/poly(sodium 4‐styrenesulfonate) (PSS) based on electrostatic interactions as a driving force are patterned by room‐temperature nanoimprint lithography (RT‐NIL). Under an imprinting pressure of 40 bar for 8 min, well‐defined pattern structures with a line width of ≈330 nm and a separation of ≈413 nm are achieved. Meanwhile, hydrogen‐bonding‐directed multilayer films of poly(vinyl pyrrolidone) (PVPON)/poly(methyl acrylic acid) (PMAA) and poly(4‐vinylpyridine)/PAA can also be patterned in a similar way by RT‐NIL. The successful imprinting of these films originates from the high compressibility and fluidity of the layered polymeric films under high pressure.
9.
Ning Ma Fu Tang Xiaoyu Wang Fang He Lidong Li 《Macromolecular rapid communications》2011,32(7):587-592
In this paper, we report on the tunable metal‐enhanced fluorescence (MEF) of Ag nanostructures. Because of the good MEF properties of the highly dendritic Ag nanostructures, we obtained an increase of up to 25 times for the weak fluorescence of porphyrin molecules (Por4–). More importantly, by the introduction of a stimulus‐responsive PAA/PDDA multilayer film as an interlayer, the distance between the fluorophores and the Ag nanostructures could be tuned by immersing the substrates into solutions of different ionic strength or pH. The MEF behavior of the composite films could thus be tuned in a controlled manner, because of the distance dependent nature of the MEF effects.
10.
Szczepan Zapotoczny Monika Golonka Maria Nowakowska 《Macromolecular rapid communications》2005,26(13):1049-1054
Summary: We demonstrate a novel approach for constructing photoactive multilayer films in which the aggregation of fluorescing molecules is effectively eliminated. In the films formed via a layer‐by‐layer electrostatic self‐assembly technique, the core‐shell amphiphilic copolymer, poly[(sodium 4‐styrenesulfonate)‐block‐vinylnaphthalene], was deposited. The isolated cores served as nanosized host sites for photoactive guest molecules (pyrene, perylene). The efficient energy transfer between polymeric chromophores and perylene molecules was observed.
11.
Giyoung Song Suk Man Cho Hee Joon Jung Richard Hahnkee Kim Insung Bae Hyungju Ahn Dr. Du Yeol Ryu Dr. June Huh Dr. Cheolmin Park 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(49):15662-15668
Supramolecular assembly through complementary interaction between molecular subgroups belonging to phase‐separating polymer species offers a great opportunity, not only for constructing nanoscale soft templates reminiscent of conventional block copolymer morphologies, but also for tailoring surface properties by facile removal of one of the structure components by cleaving complementary interactions. Herein we report the fabrication of a novel, organic, nanoporous film through supramolecular assembly of two complementarily, end‐interacting, mono‐end‐functionalized polymers under solvent annealing. The film of end‐functionalized polymer blends under solvent annealing yielded phase‐separated nanodomains that resemble nanoscopically ordered structures of block copolymers, but that are more advantageous due to easily cleavable and exchangeable links between the phase‐separated domains. The removal of one of the components of the precursor structure formed from the end‐functionalized polymers through cleavage of complementary interactions allowed us to fabricate mono‐ or multilayered nanoporous structures in which the chemically useful end‐functionalities of the remnant polymers are rich on the surface of the pores. The resultant, organic, nanoporous films with tailored surface functionality offer a useful platform for various chemical and biological applications. 相似文献
12.
Shunsuke Matsui Chisato M. Yamazaki Takaki Koide 《Macromolecular rapid communications》2012,33(10):911-915
Square‐millimeter‐sized free‐floating translucent films are formed in physiological buffer by multiway connections between biotinylated collagen‐like triple‐helical peptides and avidin. Although the compositions of the films are almost constant, regardless of the ratios of the components loaded, their thicknesses can be controlled by the concentrations of the components. The film surfaces can be further modified by taking advantage of exposed biotin (or avidin) functionalities. The self‐assembled films could serve as novel materials in biomedical and biosensing applications. 相似文献
13.
14.
Junsheng Wang Jixiao Wang Zhi Wang Fengbao Zhang 《Macromolecular rapid communications》2009,30(8):604-608
Urchin‐like PANI microspheres with an average diameter of 5–10 µm have been successfully prepared. Their surfaces consist of highly oriented nanofibers of ≈30 nm diameter and 1 µm length. The solvent composition plays an important role in the formation process of urchin‐like PANI microspheres. The structure of the products has been characterized by FT‐IR, UV‐vis, and XRD. To investigate the self‐assembly of urchin‐like PANI microspheres, the effect of polymerization time on the morphology of the products has been studied. The morphological evolution process indicates that the urchin‐like microspheres originate from the self‐assembly of nanoplates, which then grow into urchin‐like microstructures with nanofibers on the surface.
15.
16.
17.
We report the electron‐transport behaviors of a number of molecular junctions composed of π‐conjugated molecular wires. From calculations performed by using density functional theory (DFT) combined with the non‐equilibrium Green’s function (NEGF) method, we found that the length–conductivity relations are diverse, depending on the particular molecular structures. The results reveal that the conductance–length dependence follows an exponential law for many conjugated molecules with a single channel, such as oligothiophene, oligopyrrole and oligophenylene. Therefore, a quantitative relation between the energy gap (Eg)∞ of the molecular wire and the attenuation factor β can be defined. However, when the molecular wires have multichannels, the decay of conductance does not follow the exponential relation. For example, the conductance of porphyrin‐based oligomers and fused thiophene decays almost linearly. The diversity of electron‐transport behaviors of molecular junctions is directly dominated by the electron‐transport pathway. 相似文献
18.
Yunze Long Lijuan Zhang Yongjun Ma Zhaojia Chen Nanlin Wang Ze Zhang Meixiang Wan 《Macromolecular rapid communications》2003,24(16):938-942
Camphor sulfonic acid (CSA) doped polyaniline (PANI) nanotubes (175 nm in outer diameter and 120 nm in inner diameter) were synthesized successfully by a self‐assembly method. It is found that the room‐temperature conductivity of an individual PANI nanotube is 30.5 S · cm−1; in particular, the intrinsic resistance of an individual nanotube (30 kΩ) is much smaller than the contact resistance of crossed nanotubes (500 kΩ).
19.
Yu Fu Hong Xu Shilong Bai Dengli Qiu Junqi Sun Zhiqiang Wang Xi Zhang 《Macromolecular rapid communications》2002,23(4):256-259
The fabrication of stable polyelectrolyte/Au nanoparticle multilayer films was achieved by the UV irradiation of layer‐by‐layer self‐assembled multilayers consisting of diazoresins and Au nanoparticles. The method promises to be a simple and efficient strategy to construct covalently attached organic/inorganic multilayer hybrids. 相似文献
20.
《Journal of Polymer Science.Polymer Physics》2018,56(14):1035-1044
D‐A copolymer systems have unique characteristics, such as low band gap and ambipolar nature, which are important to design electronic polymer devices. In this contribution, we synthesized and characterized a D‐A random copolymer containing bis‐3‐hexylthiophene‐benzothiadiazole as acceptor unit and 9,9‐dioctylfluorene as donor unit. We show that the polymeric film morphology depends of the Hansen solubility parameters, evaporation rate, and surface tension of the solvent. Chloroform, toluene, and 1,2,4‐trichlorobenzene (TCB) promote the formation of self‐assembled structures due to breath‐figure mechanism. In contrast, THF causes aggregation and phase separation that affect negatively the electrical conductivity of the copolymer film. Among the solvents analyzed, TCB is the one with the highest molecular interaction with the copolymer synthetized in this work. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1035–1044 相似文献