首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Stability of the solid‐vapor interface is investigated. Surface roughening and evolution of flat faces at the growth interface is considered in terms of relation between gradient of temperature in the crystal and gradient of concentration in the vapor. Stability diagram is proposed, based on experimental data. The diagram summarizes the various forms and structures, which can be obtained using a typical system for growth from the vapor. The critical lines for constitutional supersaturation and appearance of low and high index faces were plotted. This attempt to the problem of stability of the growth interface differs from the former investigations mainly in looking for dependence between temperature field and concentration field rather than between more absolute parameters like temperature and supersaturation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The effect of concentration of Mn(II) ions on the growth habit and the surface micromorphology of different as‐grown faces of ammonium oxalate monohydrate (AO) single crystals grown from aqueous solutions was studied at a constant temperature of 30 °C and predefined supersaturations up to 20%. It was observed that the growth habit and the surface morphology of the crystals strongly depend on the supersaturation used for growth and the impurity concentration in the solution. The experimental results were analysed in terms of connected nets determined from different projections of the structure of AO crystals. Analysis of the observations revealed that: (1) the directions of connected nets corresponding to basic growth units composed of single (NH4)2C2O4 · H2O molecules are in excellent agreement with the low‐index crystallographic directions of the orientations of growth layers, (2) all faces appearing in the growth morphology of AO crystals are F faces, and (3) the {001} face growing from pure aqueous solutions is essentially a kinetically rough face but the presence of Mn(II) impurity leads to their appearance in the morphology due to increase in the strength of bonds of the connected nets composing the surface graph.  相似文献   

3.
Understanding the crystallization of calcium carbonate is relevant in numerous fields like biomineralization, geology and industrial applications where calcium carbonate forms. In order to enhance the knowledge about the formation of calcium carbonate with focus on the vaterite polymorph, in this work calcium carbonate has been crystallized in aqueous solutions at temperatures from 5 °C to 90 °C. Special attention has been directed to higher temperatures for which the effect of the initial supersaturation on the resulting crystal morphologies and the onset of dendritic growth have been studied. In analogy to snow crystal formation, it has been found that in a certain temperature range hexagonal plate‐like crystals form at low supersaturation whereas dendritic patterns start to appear at higher supersaturation. The symmetrical branches characteristic for dendritic growth get less pronounced as the temperature is decreased. The results reported here related to the interdependence between supersaturation, crystal morphology and growth mechanisms, can be used in future works to predict particle formation and to design crystal architectures. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Single crystals of zinc magnesium tetra thiocyanate [ZnMg(SCN)4], a bimetallic thiocyanate complex, were grown by slow evaporation solution growth technique at room temperature. The bright, transparent and colourless crystals have well defined faces. The grown crystals were characterized through elemental analysis, powder X‐ray diffraction (XRD), thermogravimetric (TG) and differential thermal analysis (DTA), differential scanning calorimetric analysis (DSC), Fourier Transform Infra red (FTIR) and Optical studies. The elemental analysis confirms the stoichiometry of the synthesized crystals. The compound crystallizes under monoclinic structure with lattice parameters a = 10.055 Å, b = 7.44 Å, c = 6.00 Å and β = 90.113°. The TGA indicates 25 % weight loss at 205°C from which the decomposition pattern is formulated. The DSC study indicates that the crystal undergoes only first order phase transitions. The FTIR spectrum indicates among others the presence of metal‐nitrogen and metal‐sulphur bonds thus confirming the formation of the complex. The second harmonic‐generation (SHG) was confirmed by the emission of green radiation using Nd: YAG laser. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Morphology of the {100} faces of L‐arginine phosphate monohydrate (LAP) single crystal grown at 25 °C at a supersaturation of 0.32 has been discussed. The rectangular dislocation growth hillocks elongate along the b direction, which manifests the fast growth due to the strong Period Bond Chain (PBC) bonds along this direction. Apart from that, the growth hillocks are consistent with the macro‐morphology of the crystal grown at the pH value of about 4.2. The lopsided shapes of the hillocks result from step bunching. Triangular pits are assumed to form during the process of the steps getting across the impurities. The hollow cavities existing on the growth hillocks also elongate along the b direction and they can lead to the formation of other defects such as dislocations. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Potassium magnesium sulphate hexahydrate (picromerite) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at room temperature. The crystals were bright, colourless and transparent having well defined external faces. The grown crystals were characterized through Fourier Transform Infrared (FTIR) spectral studies and thermal analysis. The FTIR data were used to assign the characteristic vibrational frequencies of the various chemical bonds in the compound. The compound crystallizes in monoclinic lattice with the space group P21/c. The thermogravimetry (TG) indicates the removal of only two water molecules around 100 °C. A suitable decomposition pattern was formulated based on the percentage weight losses observed in TG of the compound. The results of differential thermal analysis (DTA) conform to the results of TGA. Differential scanning calorimetry (DSC) analysis carried out at high temperature suggests that the occurrence of two phase transitions in the crystal between 140 and 180 °C. When the crystal was cooled below the room temperature up to –170 °C, no thermal anomaly was observed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The growth of SiC crystals or epilayers from the liquid phase has already been reported for many years. Even if the resulting material can be of very high structural quality and the possibility to close micropipes was demonstrated, handling the liquid phase still is a challenge. Moreover, it is highly difficult to stabilize the C dissolution front and then to stabilize the growth front over a long growth time. Based on the Vapour‐Liquid‐Solid (VLS) mechanism, we present a new configuration for the growth of SiC single crystal which should allow first to simplify the liquid handling at high temperature and second to precisely control the crystal growth front. The process consists in a modified top and bottom seeded solution growth method, in which the liquid is held under electromagnetic levitation and fed from the gas phase. 3C‐SiC crystals exhibiting well‐faceted morphology were successfully obtained at 1100‐1200 °C with exceptional growth rates, varying from 1 to 1.5 mm/h in Ti‐Si melt. It was shown that the nucleation density decreases simultaneously with increasing propane partial pressure. At 1200‐1400 °C, thick homoepitaxial 6H‐SiC layers were successfully obtained in Co‐Si and Ti‐Si melts, with growth rate up to 200 µm/h. Large terraces with smooth surfaces are observed suggesting a layer by layer growth mode, and the influence of the system pressure was demonstrated. It was shown that the terrace size decrease simultaneously with increasing propane partial pressure which suggests the beginning of a two dimensional to three dimensional growth mode transition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The article describes the effect of degree of supersaturation, σ, on the crystallization of specific polymorphs of phenylbutazone from its methanolic solution at 20 °C. At low initial supersaturation, σ ≤ 2.0, the fraction of the metastable α polymorph in the crystallized product exceeds that of the δ polymorph, while at σ ≥ 5.0, the fraction of the stable δ polymorph increases in the crystallized product. The results are explained by the effect of supersaturation on the relative rates of nucleation and crystal growth of the polymorphs. Furthermore, the mechanism of nucleation and crystal growth also change with supersaturation. Supersaturated methanolic solutions of phenylbutazone exhibit a critical temperature at which the nucleation rates of the polymorphs decrease drastically. This effect is partly explained by the decreased mobility of phenylbutazone molecules at lower temperatures. Nucleation is most rapid when the crystallization temperature is close to the transition temperature, Tt(α ⟷ δ), between the polymorphs, α and δ. The nucleation rate decreases as the temperature difference between Tt(α ⟷ δ) and the crystallization temperature increases. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Single crystal growth experiments were conducted to investigate the growth rate of acetaminophen (paracetamol) crystals under carefully controlled conditions of temperature, supersaturation and pH value. The relative growth rate of the different faces was studied. Growth Rate Dispersion (GRD) was observed by studying the effect of supersaturation and temperature on the growth rate. The growth rate in all directions was found to be temperature dependant. Elongation of the crystals was measured due to the faster growth in the Y‐ direction and Xa direction compared to in the Xb direction. Dissolution of the crystals was observed at pH values greater than 8.5, and a growth rate retardation was observed when increasing the pH from 5.6, which is the normal value without additions, to higher values in both acidic and basic mediums up to 8.5. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The face growth rate and critical supersaturation of {100} face were in situ measured using the laser‐polarization‐interference technique in the presence of potassium pyrophosphate, trimetric sodium phosphate and sodium hexametaphosphate impurities. The polyphosphate impurities inhibit the growth rate of prismatic faces. The face growth rate as a function of supersaturation at different impurity concentrations, as well as critical supersaturation as a function of impurity concentrations, was found in good agreement with a two‐dimensional nucleation model in the pure system and Kubota and Mullin's model in the presence of impurities. The average distance L between active sites available for impurity adsorption as well as the edge free energy was calculated. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The experimental results of a study of the effect of supersaturation and temperature on the growth morphology of ammonium oxalate monohydrate [(NH4)2C2O4H2O; AO] single crystals obtained from aqueous solutions at 30 and 40 °C and supersaturation up to 9% are presented. The observations are analysed in terms of theoretical morphology, growth models and attachment energy for growth units in steps of growing faces.  相似文献   

12.
To grow ZnO single crystals from a high temperature solution of the ZnO‐PbF2 system, a gas cooling system was assembled at the bottom of the crucible to induce nucleation in the initial growth stage. The growth experiments were carried out in a homemade vertical Bridgman furnace and Pt crucible of 28 mm in diameter was used. The furnace temperature was set to 1100°C and the flow rate of the oxygen gas was optimized as 3.0 l/min. ZnO crystal up to 5∼8mm in the thickness was obtained with the lowering rate of 0.3 mm/h. XRD patterns showed that the as‐grown crystal was pure ZnO Wurtzite phase. The impurity ions were analyzed by the glow discharge mass spectroscopy (GDMS) as 390.0 ppm and 40.0 ppm for Pb2+ and F, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Large Ta2O5 single crystal with high‐dielectric permittivity was successfully grown by floating zone (FZ) method under air atmosphere. The grown crystal that has been obtained was typically about 8 mm in diameter and 90 mm in length. The crystal growth parameters were optimized. The crystal symmetry, characterized by means of X‐ray diffraction (XRD), was found to be tetragonal. The relative permittivity and loss tangent along growth and [001] direction were measured in the temperature range between ‐200 °C and 200 °C, which showed a strong dielectric anisotropy. At a frequency of 1 MHz and 20 °C, the dielectric permittivity along the growth direction and [001] direction are 81.17 and 25.04 respectively. The stabilization of high‐temperature phase can explain the dielectric enhancement.  相似文献   

14.
The effect of uric acid seeds on calcium oxalate formation was studied at pH 4.50 and 37 °C using a system providing constant supersaturation with respect to calcium oxalate and saturated in uric acid. In all cases the only solid‐phase forming was identified as calcium oxalate monohydrate (COM). Kinetic analysis of the initial rates showed that they were proportional with the relative supersaturation with respect to calcium oxalate monohydrate. The linear dependence of the rate of precipitation of COM on uric acid suggested that growth is mediated through a surface diffusion controlled mechanism. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Surface morphology of the (100) face of potassium dihydrogen phosphate (KDP) crystals which were grown at different supersaturations at 25 °C was investigated by in situ atomic force microscopy (AFM). Various AFM images of 2D nucleation under different growth conditions were presented. It is found that the growth of KDP is controlled by polynuclear nucleation mechanism at the high supersaturation. With reduction of the supersaturation, the growth velocity of 2D nuclei becomes very slow and shows typical anisotropy. It is found that the process of coalescence of 2D nuclei does not lead to defect. The experiments show that the growth mechanism for KDP at 25 °C changes between step flow and 2D nucleation in the supersaturation range of 4.5‐5%. The triangular nuclei which are close to equilateral triangle are observed in the experiment at the supersaturation σ = 6% for the first time, showing typical anisotropic growth. Through observing the dissolution of 2D nuclei, the dissolving process can be regarded as the reverse process of growth. We also find that the microcrystals landing on the surface at σ = 9% would grow and coalesce with each other and there is no observable defect in the coalescence. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Tetrathioureacopper(I) chloride, hereafter abbreviated as TCC, was synthesised and single crystals were obtained from saturated aqueous solution by slow evaporation (solution growth) method at room temperature. The crystals obtained are bright, colourless and transparent having well defined external faces. The grown crystals were characterized through elemental analysis, single crystal X‐ray diffraction study, thermal analysis, electron spin resonance spectroscopy and Fourier Transform infrared spectroscopy. The elemental analysis confirms the stoichiometry of the compound. The single crystal diffraction studies indicate that TCC crystallises in the tetragonal lattice and the unit cell parameters are a = b = 13.4082 Å, c = 13.8074 Å, V = 2482.29 Å3, α = β = γ = 90°. Space group and the number of molecules per unit cell (Z) are found to be P41212 and 8 respectively. The TG curve of the sample shows a prolonged decomposition from 210 to 628.3 °C, from which the decomposition pattern has been formulated. The endothermic peaks in the DTA curve indicate melting and decomposition of the compound at 165.2 and 633.8 °C respectively. An exothermic peak in high temperature DSC indicates a phase transition in the compound at 274.8 °C. Thermal anomalies observed in the low temperature DSC at –163.3, –152.0, –141.5, –108.3, 1.0 and 12.1 °C in the heating run and –157.1 and –153.9 °C in the cooling run reveal first order phase transitions in the crystal. The peaks observed at –146.2 °C in both the heating and cooling runs suggest occurrence of a second order phase transition in this compound. The IR spectroscopic data were used to assign the characteristic vibrational frequencies of various groups present in the compound. The ESR study confirms that the copper is in the +1 oxidation state in the complex. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Growth kinetics of zinc (tris) thiourea sulphate (ZTS) crystals investigated as a function of supersaturation is reported in this communication. Crystal growth rates were investigated normal to the (100), (010) and (001) faces under growth conditions employed for bulk crystal growth. The growth rates normal to (010) and (100) were found to follow the continuous growth model (RG = Cσ) with respect to the supersaturation whereas the growth rates normal to (001) was found to satisfy birth and spread (B+S) model (RG = Aσ5/6 exp(‐B/σ)). The growth rates observed normal to the studied face are in agreement with the growth mechanism predicted from the estimated α (Jackson) factor. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Experimental determination of solubility, metastable zonewidth and induction period for an organic nonlinear optical (NLO) L‐arginine trifluoroacetate (LATF) crystal is reported. The interfacial tension for different supersaturation conditions has been estimated for the LATF solution at 45°C. Bulk crystal of dimensions 57x5x3 mm3 has been grown by temperature lowering technique using optimized growth parameters. Powder X‐ray diffraction and FTIR studies confirm the crystalline nature and the functional groups of the grown crystals respectively. Linear optical property of the grown crystal has been studied by UV‐Vis spectrum. Thermal analyses have revealed that the compound is thermally stable upto 212°C. Kurtz powder SHG test confirm the nonlinear optical properties of the as‐grown LATF crystal. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Crystallization of TGS at 52.0°C - above the transition point - has been studied in a wide range of supersaturation of the solution (σ = 0 to 10−2). The rates of growth of {110} and {001} faces were measured as a function of supersaturation at constant hydrodynamical conditions (Re = 3.4 · 10−3). Further, the influence of hydrodynamical conditions on the growth of {110} faces at constant supersaturation (σ = 4.2 · 10−3) was established. The parameters of the experimentally found dependences are determined on the basis of the surface-diffusion model of BURTON . CABRERA and FRANK . From these dependences follows that the growth rate of the {110} faces is already almost limited by the volume diffusion of TGS molecules towards the crystal surface, while in the case of {001} faces the surface diffusion mechanism of crystallization is clearly manifested. Dislocation densities in the crystals have been determined by means of etching technique. The number of dislocations increases with increasing supersaturation; hence, supersaturation of the solution together with the processes taking place in the regeneration zone surrounding the seed determine the number of dislocations in the crystal volume and thus the resulting structural perfection of single crystals. Investigation of the spontaneous redistribution of domains showed that the growth rate of TGS crystals influences the dielectric properties to much smaller extent than does chemical purity.  相似文献   

20.
Crystallization experiments of sucrose were performed in a batch crystallizer to study the effect of temperature and growth rate history on the crystal growth kinetics. In one of the growth methods adopted, the isothermal volumetric growth rate (RV) is determined as a function of supersaturation (S) at 35, 40 and 45 ºC. In the other, crystals are allowed to grow at constant supersaturation by automatically controlling the solution temperature as the solute concentration decreased. Using the latter method RV is calculated as the solution is cooled. The obtained results are interpreted using empirical, engineering and fundamental perspectives of crystal growth. Firstly, the overall activation energy (EA) is determined from the empirical growth constants obtained in the isothermal method. The concept of falsified kinetics, widely used in chemical reaction engineering, is then extended to the crystal growth of sucrose in order to estimate the true activation energy (ET) from the diffusion‐affected constant, EA. The differences found in the isothermal and constant supersaturation methods are explained from the viewpoint of the spiral nucleation mechanism, taking into account different crystal surface properties caused by the growth rate history in each method. Finally, the crystal growth curve obtained in the batch crystallizer at 40 ºC is compared with the one obtained in a fluidized bed crystallizer at the same temperature. Apparently divergent results are explained by the effects of crystal size, hydrodynamic conditions and growth rate history on the crystallization kinetics of sucrose. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号