共查询到20条相似文献,搜索用时 0 毫秒
1.
Kobra Mahdavipour Mahshid Khazaei Shadfar Hossein Rangani Jahromi Roberto Morandotti Rosario Lo Franco 《Entropy (Basel, Switzerland)》2022,24(3)
A witness of non-Markovianity based on the Hilbert–Schmidt speed (HSS), a special type of quantum statistical speed, has been recently introduced for low-dimensional quantum systems. Such a non-Markovianity witness is particularly useful, being easily computable since no diagonalization of the system density matrix is required. We investigate the sensitivity of this HSS-based witness to detect non-Markovianity in various high-dimensional and multipartite open quantum systems with finite Hilbert spaces. We find that the time behaviors of the HSS-based witness are always in agreement with those of quantum negativity or quantum correlation measure. These results show that the HSS-based witness is a faithful identifier of the memory effects appearing in the quantum evolution of a high-dimensional system with a finite Hilbert space. 相似文献
2.
Ahmad N. Khedr Abdel-Baset A. Mohamed Abdel-Haleem Abdel-Aty Mahmoud Tammam Mahmoud Abdel-Aty Hichem Eleuch 《Entropy (Basel, Switzerland)》2021,23(12)
In the thermodynamic equilibrium of dipolar-coupled spin systems under the influence of a Dzyaloshinskii–Moriya (D–M) interaction along the z-axis, the current study explores the quantum-memory-assisted entropic uncertainty relation (QMA-EUR), entropy mixedness and the concurrence two-spin entanglement. Quantum entanglement is reduced at increased temperature values, but inflation uncertainty and mixedness are enhanced. The considered quantum effects are stabilized to their stationary values at high temperatures. The two-spin entanglement is entirely repressed if the D–M interaction is disregarded, and the entropic uncertainty and entropy mixedness reach their maximum values for equal coupling rates. Rather than the concurrence, the entropy mixedness can be a proper indicator of the nature of the entropic uncertainty. The effect of model parameters (D–M coupling and dipole–dipole spin) on the quantum dynamic effects in thermal environment temperature is explored. The results reveal that the model parameters cause significant variations in the predicted QMA-EUR. 相似文献
3.
Ping Zhang 《Entropy (Basel, Switzerland)》2022,24(2)
Shinagawa and Iwata are considered quantum security for the sum of Even–Mansour (SoEM) construction and provided quantum key recovery attacks by Simon’s algorithm and Grover’s algorithm. Furthermore, quantum key recovery attacks are also presented for natural generalizations of SoEM. For some variants of SoEM, they found that their quantum attacks are not obvious and left it as an open problem to discuss the security of such constructions. This paper focuses on this open problem and presents a positive response. We provide quantum key recovery attacks against such constructions by quantum algorithms. For natural generalizations of SoEM with linear key schedules, we also present similar quantum key recovery attacks by quantum algorithms (Simon’s algorithm, Grover’s algorithm, and Grover-meet-Simon algorithm). 相似文献
4.
Pawe A. Kluza 《Entropy (Basel, Switzerland)》2021,23(12)
In this paper, we introduce new divergences called Jensen–Sharma–Mittal and Jeffreys–Sharma–Mittal in relation to convex functions. Some theorems, which give the lower and upper bounds for two new introduced divergences, are provided. The obtained results imply some new inequalities corresponding to known divergences. Some examples, which show that these are the generalizations of Rényi, Tsallis, and Kullback–Leibler types of divergences, are provided in order to show a few applications of new divergences. 相似文献
5.
6.
We present a comprehensive simulation study of the Newtonian and quantum model of a Stern–Gerlach experiment with cold neutrons. By solving Newton’s equation of motion and the time-dependent Pauli equation for a wide range of uniform magnetic field strengths, we scrutinize the role of the latter for drawing the conclusion that the magnetic moment of the neutron is quantized. We then demonstrate that a marginal modification of the Newtonian model suffices to construct, without invoking any concept of quantum theory, an event-based subquantum model that eliminates the shortcomings of the classical model and yields results that are in qualitative agreement with experiment and quantum theory. In this event-by-event model, the intrinsic angular momentum can take any value on the sphere, yet, for a sufficiently strong uniform magnetic field, the particle beam splits in two, exactly as in experiment and in concert with quantum theory. 相似文献
7.
Collins Okon Edet Francisco Cleiton E. Lima Carlos Alberto S. Almeida Norshamsuri Ali Muhammad Asjad 《Entropy (Basel, Switzerland)》2022,24(8)
We investigate quantum information by a theoretical measurement approach of an Aharanov–Bohm (AB) ring with Yukawa interaction in curved space with disclination. We obtained the so-called Shannon entropy through the eigenfunctions of the system. The quantum states considered come from Schrödinger theory with the AB field in the background of curved space. With this entropy, we can explore the quantum information at the position space and reciprocal space. Furthermore, we discussed how the magnetic field, the AB flux, and the topological defect influence the quantum states and the information entropy. 相似文献
8.
A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass M of the black hole, scaling as ; (b) for supermassive black holes is typically orders of magnitude larger than the Planck length . Instead, for typical stellar-mass black holes, may drop well below . The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons. 相似文献
9.
In a previous work published by the authors in 2020, a novel concept of light confinement in a microcavity was introduced which is based on successive perfect transmissions at Brewster’s angle. Hence, a new class of open billiards was designed with star-shaped microcavities where rays propagate on orbits that leave and re-enter the cavity. In this article, we investigate the ray–wave correspondence in microstar cavities. An unintuitive difference between clockwise and counterclockwise propagation is revealed which is traced back to nonlinear resonance chains in phase space. 相似文献
10.
Thibaud Brochet Jrme Lapuyade-Lahorgue Alexandre Huat Sbastien Thureau David Pasquier Isabelle Gardin Romain Modzelewski David Gibon Juliette Thariat Vincent Grgoire Pierre Vera Su Ruan 《Entropy (Basel, Switzerland)》2022,24(4)
In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely used as a loss function for most neural networks applied to the segmentation, classification and detection of images. Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy. In this work, we compare these two entropies through a medical application for predicting recurrence in patients with head–neck and lung cancers after treatment. Based on both CT images and patient information, a multitask deep neural network is proposed to perform a recurrence prediction task using cross-entropy as a loss function and an image reconstruction task. Tsallis–Havrda–Charvat cross-entropy is a parameterized cross-entropy with the parameter . Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy for . The influence of this parameter on the final prediction results is studied. In this paper, the experiments are conducted on two datasets including in total 580 patients, of whom 434 suffered from head–neck cancers and 146 from lung cancers. The results show that Tsallis–Havrda–Charvat entropy can achieve better performance in terms of prediction accuracy with some values of . 相似文献
11.
Masoomeh Bararzadeh Ledari Yadollah Saboohi Antonio Valero Sara Azamian 《Entropy (Basel, Switzerland)》2021,23(1)
This paper explains a thorough exergy analysis of the most important reactions in soil–plant interactions. Soil, which is a prime mover of gases, metals, structural crystals, and electrolytes, constantly resembles an electric field of charge and discharge. The second law of thermodynamics reflects the deterioration of resources through the destruction of exergy. In this study, we developed a new method to assess the exergy of soil and plant formation processes. Depending on the types of soil, one may assess the efficiency and degradation of resources by incorporating or using biomass storage. According to the results of this study, during different processes from the mineralization process to nutrient uptake by the plant, about 62.5% of the input exergy will be destroyed because of the soil solution reactions. Most of the exergy destruction occurs in the biota–atmosphere subsystem, especially in the photosynthesis reaction, due to its low efficiency (about 15%). Humus and protonation reactions, with 14% and 13% exergy destruction, respectively, are the most exergy destroying reactions. Respiratory, weathering, and reverse weathering reactions account for the lowest percentage of exergy destruction and less than one percent of total exergy destruction in the soil system. The total exergy yield of the soil system is estimated at about 37.45%. 相似文献
12.
Sergey Tarasov William Shannon Vladimir Kocharovsky Vitaly Kocharovsky 《Entropy (Basel, Switzerland)》2022,24(12)
We propose a multi-qubit Bose–Einstein-condensate (BEC) trap as a platform for studies of quantum statistical phenomena in many-body interacting systems. In particular, it could facilitate testing atomic boson sampling of the excited-state occupations and its quantum advantage over classical computing in a full, controllable and clear way. Contrary to a linear interferometer enabling Gaussian boson sampling of non-interacting non-equilibrium photons, the BEC trap platform pertains to an interacting equilibrium many-body system of atoms. We discuss a basic model and the main features of such a multi-qubit BEC trap. 相似文献
13.
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems. One form of TUR quantifies the minimal energetic cost of achieving a certain precision in determining a nonequilibrium current. In this initial stage of our research program, our goal is to provide the quantum theoretical basis of TURs using microphysics models of linear open quantum systems where it is possible to obtain exact solutions. In paper [Dong et al., Entropy 2022, 24, 870], we show how TURs are rooted in the quantum uncertainty principles and the fluctuation–dissipation inequalities (FDI) under fully nonequilibrium conditions. In this paper, we shift our attention from the quantum basis to the thermal manifests. Using a microscopic model for the bath’s spectral density in quantum Brownian motion studies, we formulate a “thermal” FDI in the quantum nonequilibrium dynamics which is valid at high temperatures. This brings the quantum TURs we derive here to the classical domain and can thus be compared with some popular forms of TURs. In the thermal-energy-dominated regimes, our FDIs provide better estimates on the uncertainty of thermodynamic quantities. Our treatment includes full back-action from the environment onto the system. As a concrete example of the generalized current, we examine the energy flux or power entering the Brownian particle and find an exact expression of the corresponding current–current correlations. In so doing, we show that the statistical properties of the bath and the causality of the system+bath interaction both enter into the TURs obeyed by the thermodynamic quantities. 相似文献
14.
I numerically simulate and compare the entanglement of two quanta using the conventional formulation of quantum mechanics and a time-symmetric formulation that has no collapse postulate. The experimental predictions of the two formulations are identical, but the entanglement predictions are significantly different. The time-symmetric formulation reveals an experimentally testable discrepancy in the original quantum analysis of the Hanbury Brown–Twiss experiment, suggests solutions to some parts of the nonlocality and measurement problems, fixes known time asymmetries in the conventional formulation, and answers Bell’s question “How do you convert an ’and’ into an ’or’?” 相似文献
15.
Leonardo Rydin Gorjo Dirk Witthaut Klaus Lehnertz Pedro G. Lind 《Entropy (Basel, Switzerland)》2021,23(5)
With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers–Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers–Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers–Moyal coefficients for discontinuous processes which can be easily implemented—employing Bell polynomials—in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data. 相似文献
16.
17.
18.
We examine the emergence of objectivity for quantum many-body systems in a setting without an environment to decohere the system’s state, but where observers can only access small fragments of the whole system. We extend the result of Reidel (2017) to the case where the system is in a mixed state, measurements are performed through POVMs, and imprints of the outcomes are imperfect. We introduce a new condition on states and measurements to recover full classicality for any number of observers. We further show that evolutions of quantum many-body systems can be expected to yield states that satisfy this condition whenever the corresponding measurement outcomes are redundant. 相似文献
19.
20.
Aiming to solve the problem of dense-frequency signals in the power system caused by the growing proportion of new energy, this paper proposes a dense-frequency signal-detection method based on the primal–dual splitting method. After establishing the Taylor–Fourier model of the signal, the proposed method uses the sparse property of the coefficient matrix to obtain the convex optimization form of the model. Then, the optimal solution of the estimated phasor is obtained by iterating over the fixed-point equation, finally acquiring the optimal estimation result for the dense signal. When representing the Taylor–Fourier model as a convex optimization form, the introduction of measuring-error entropy makes the solution of the model more rigorous. It can be further verified through simulation experiments that the estimation accuracy of the primal–dual splitting method proposed in this paper for dense signals can meet the M-class PMU accuracy requirements. 相似文献