首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A bead‐spring model of a polymer chain with one end attached to a wall is studied by Monte Carlo simulations for chain lengths 16 ≤ N ≤ 256. Two types of adsorption potentials, 9‐3 and 10‐4 Lennard‐Jones (LJ) potentials, between the effective monomers and the wall are assumed. For both cases the adsorption transition where the chain changes its asymptotic statistical properties from a three‐dimensional to a two‐dimensional configuration is located using a scaling analysis. It is shown that the crossover exponent φ = 0.50 ± 0.02 is the same for both LJ potentials. This value is compatible with recent theoretical predictions and simulation results for lattice models with short‐range wall potentials. The results of our study support the expectation that the exponents describing the adsorption transition are universal, i.e., they are not influenced by the precise form and the long‐range character of the adsorption potentials used. The technical aspects of the simulations (which use configurational bias methods as well as histogram re‐weighting) are also carefully discussed.

Snapshot pictures of a bead‐spring model of a polymer chain with N = 256 beads with one end anchored on the surface: (a)“mushroom configuration”, (b) εa εw at the adsorption transition, and (c)“pancake configuration” of a strongly adsorbed chain.  相似文献   


2.
Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of multivalent polymer chains to a surface with receptors. Multivalent polymer chains display superselective adsorption. Furthermore, the range of density of surface receptors at which a multivalent polymer chain displays a superselective behavior, narrows down for chains with higher density of ligands. Meanwhile, the optimal density of surface receptors where the highest superselectivity is achieved, decreases with increasing the density of ligands. Then, the conformational properties of bound multivalent chains are studied systematically. Interestingly, we find that the equilibrium radius of gyration Rg and its horizontal component have a maximum as a function of the density of surface receptors. The scaling exponents of Rg with the length of chain suggest that with increasing the density of surface receptors., the conformations of a bound multivalent polymer chain first fall in between those of a two-dimensional (2D) and a 3D chain, while it is slightly collapsed subsequently.  相似文献   

3.
The surface tension of the air—water interface increases upon addition of inorganic salts, implying a negative surface excess of ionic species. Most acids, however, induce a decrease in surface tension, indicating a positive surface excess of hydrated protons. In combination with the apparent negative charge at pure air–water interfaces derived from electrokinetic experiments, this experimental observation has been a source of intense debate since the mid‐19th century. Herein, we calculate surface tensions and ionic surface propensities at air–water interfaces from classical, thermodynamically consistent molecular dynamics simulations. The surface tensions of NaOH, HCl, and NaCl solutions show outstanding quantitative agreement with experiment. Of the studied ions, only H3O+ adsorbs to the air–water interface. The adsorption is explained by the deep potential well caused by the orientation of the H3O+ dipole in the interfacial electric field, which is confirmed by ab initio simulations.  相似文献   

4.
5.
Nanoparticles in a flexible polymer melt film often segregate to the substrate due to attractive depletion interactions between the nanoparticles and the substrate. Here, molecular dynamics simulations are performed to study the effect of chain stiffness on this segregation. The nanoparticles are modeled as spheres and the polymers as semi‐flexible bead‐spring chains. Both purely repulsive and attractive forces are considered, while assuming non‐selective interactions among all species. The nanoparticles are found to be well‐dispersed in the system having repulsive forces only and aggregate into clusters in the completely attractive system. For the repulsive system, adding chain stiffness substantially decreases the nanoparticles' segregation, and hence their concentration, at the substrate.

  相似文献   


6.
以吸附量为评价指标,筛选米诺地尔分子印迹聚合物的合成条件。结果表明,制备该聚合物的较佳反应条件是V_(甲醇)/V_(乙腈)=1∶3为致孔剂、a-甲基丙烯酸(MAA)为功能单体、n_(米诺地尔)/n_(MAA)/n_(交联剂)=1∶6∶20,采用筛选出的合成条件制备出的分子印迹聚合物,对模板分子有良好的吸附性能。  相似文献   

7.
The diffusion of nanoparticles immersed in semidilute polymer solutions is investigated by a hybrid mesoscopic multiparticle collision dynamics method. Effects of polymer concentration and hydrodynamic interactions among polymer monomers are focused. Extensive simulations show that the dependence of diffusion coefficient D on the polymer concentration c agrees with Phillies equation D-exp (-αcδ) with a scaling exponent δ≈0.97 which coincides with the experimental one in literature. For increasing nanoparticle size, the scaling prefactor α increases monotonically while the scaling exponent always keeps fixed. Moreover, we also study the diffusion of nanoparticle without hydrodynamic interactions and find that mobility of the nanoparticle slows down, and the scaling exponent is obviously different from the one in experiments, implying that hydrodynamic interactions play a crucial role in the diffusion of a nanoparticle in semidilute polymer solutions.  相似文献   

8.
This paper studied the polymerization‐induced phase separation phenomenon (spinodal decomposition) in a model binary polymer solution under a linear spatial temperature gradient for the purpose of fabricating anisotropic polymeric materials by using mathematical modeling and computer simulation. Reaction kinetics were incorporated with the non‐linear Cahn‐Hilliard theory and the Flory‐Huggins free energy expression in the model. Moreover, the slow mode theory and Rouse law were used to account for polymer diffusion. It was found that an anisotropic morphology was obtained when a temperature gradient was imposed along the polymer solution sample. The direction of the structural anisotropy, however, depended significantly on the overall phase separation time. The presence of a temperature gradient along the polymer solution sample generated a spatial variation in polymerization rate, which resulted in a spatial variation of quench depth. Consequently, at a given instant, the phase separation at different locations of the polymer solution was at different stages of spinodal decomposition. The droplet size formed along the polymer solution was therefore dependent on the polymerization rate, the quench depth and the stage of spinodal decomposition. Furthermore, the spatial temperature gradient produced a spatial variation in the process induction time, which contains the polymerization induction time and phase separation induction time. It was also found that the polymerization induction time played a significant role on the spatial variation in the overall process induction time.

  相似文献   


9.
10.
An NMR structural study of the interaction between a small‐molecule optical probe (DAOTA‐M2) and a G‐quadruplex from the promoter region of the c‐myc oncogene revealed that they interact at 1:2 binding stoichiometry. NMR‐restrained structural calculations show that binding of DAOTA‐M2 occurs mainly through π–π stacking between the polyaromatic core of the ligand and guanine residues of the outer G‐quartets. Interestingly, the binding affinities of DAOTA‐M2 differ by a factor of two for the outer G‐quartets of the unimolecular parallel G‐quadruplex under study. Unrestrained MD calculations indicate that DAOTA‐M2 displays significant dynamic behavior when stacked on a G‐quartet plane. These studies provide molecular guidelines for the design of triangulenium derivatives that can be used as optical probes for G‐quadruplexes.  相似文献   

11.
A general matrix formula is proposed for the weight‐average molecular weights of the polymer systems formed through simultaneous scission, branching and crosslinking of N types of chains, assuming the chain connection statistics are Markovian. For the polymerization systems in which chains are generated consecutively, such as for free‐radical polymerization, the present theory can be applied by increasing the number of chain types N to infinity, by considering the chains formed at different times as different types of chains. The gel point determination reduces to the eigenvalue problem and the present theory extends the classical gelation theory to non‐random, history‐dependent reaction systems. From the mathematical point of view, this theory is capable of describing complex molecular build‐up processes through end‐linking, T‐ and H‐shaped chain connections, irrespective of reaction/reactor types used.

Schematic representation of the 0th generation segment and the connection to the 1st generation segments.  相似文献   


12.
The crossover from small‐molecule to polymer behavior in realistic models of PI at temperatures well above the glass transition is investigated by means of MD simulations. The molar masses range from the monomer to = 6 800 g · mol−1 which is far from the critical value for entanglement in PI. It is shown that at this temperature the non‐Gaussian parameter almost vanishes in the Q‐range studied. This implies Gaussian behavior in almost all the Q‐range. From the mean square displacement and the incoherent scattering function behavior a smooth transition from the microscopic regime to the Rouse dynamics is observed. The Rouse behavior is achieved at chain molecular weights of about 1 000 g · mol−1, which corresponds to 14 monomer units.

  相似文献   


13.
The adsorption of propylene oxide, a chiral molecule, on a Pt(111) single‐crystal surface was studied as a function of enantiomeric composition by temperature programmed desorption (TPD) and molecular beams. Two opposing trends were observed leading to variations in the enantiomeric excess (ee) of the chemisorbed layers with respect to the composition of the gas‐phase mixtures: a kinetic effect dominant during the initial uptake, with a preference toward the formation of enantiopure layers, and a steady‐state effect seen after approximately monolayer half‐saturation, at which point the preference is toward racemization. These effects may account for important phenomena such as the bias toward one chirality in biological systems and the selective crystallization of some chiral compounds, and may also be used in practical applications for chemical separations and catalysis.  相似文献   

14.
采用分子动力学模拟方法研究不同聚合度(N)的聚乙烯(PE)单链在Si(111)表面上的吸附和扩散行为. 分别设置相对介电常数为1和78模拟无溶剂和不良溶剂环境. PE单链的平衡吸附构象均呈现为二维吸附构象, 但在这两种截然不同的环境中呈现不同的构象和动力学特征, 说明溶剂环境对于疏水高分子单链在疏水表面上的吸附和扩散起到了很大的作用. 吸附能与聚合度呈线性关系, 单位链长的平均吸附能是-0.38 kJ·mol-1. 另外, 扩散系数(D)与聚合度之间的标度关系是D~N-3/2.  相似文献   

15.
16.
17.
In this work, the combined iterative Boltzmann inversion/conditional reversible work scheme is extended with a little modifications to derive the systematically coarse‐grained (CG) potentials for simulating two typical atactic polymer blends composed of poly(methyl methacrylate) (PMMA) and poly(vinyl chloride) (PVC) or polystyrene (PS). Molecular dynamics simulations are extensively performed on the two blends with a wide formulation range. It is revealed by these simulations that, throughout the entire composition range, the PMMA/PVC blend is homogeneous whereas the PMMA/PS blend undergoes phase separation, which agrees well with the experimental observation that the former exhibits strong interactions that are absent in the latter. Depending upon the formulation, the immiscible PMMA/PS blend presents one single‐ or double‐continuous phase. It is further confirmed that intermolecular interactions play the key roles in forming the phase morphologies, which in turn can be inferred from only the three nonbonded CG potentials of one unlike pair and two like pairs.

  相似文献   


18.
19.
We have performed MD simulations to investigate H2 adsorption on Ag–Au nanoclusters with the different Au mole fractions supported on the carbon nanotubes with the different diameters. Our thermodynamic results shown that the saturation value of coverage and the enthalpy of adsorption increases as the mole fraction of Au is increased. Our structural results showed that the presence of the H2 gas exerts a significant effect on the nanocluster surface atoms and tends to stabilize the surface atoms on the nanocluster. Also, the structural changes are irreversible in such a way that by gradually decreasing the pressure to zero, the nanocluster geometry is not reversed to its initial structure in vacuum conditions. We have also shown that the nanoclusters have smaller values of the self‐diffusion coefficients in presence of H2 molecules than those values in the initial state (vacuum), which is due to the increasing of the interface structure between the nanocluster and the nanotube.  相似文献   

20.
POx bottle‐brush brushes (BBBs) are synthesized by SIPGP of 2‐isopropenyl‐2‐oxazoline and consecutive LCROP of 2‐oxazolines on 3‐aminopropyltrimethoxysilane‐modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2‐methyl‐2‐oxazoline) and poly(2‐ethyl‐2‐oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号