首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we prove uniform convergence estimates for the recently developed Galerkin‐multigrid methods for nonconforming finite elements for second‐order problems with less than full elliptic regularity. These multigrid methods are defined in terms of the “Galerkin approach,” where quadratic forms over coarse grids are constructed using the quadratic form on the finest grid and iterated coarse‐to‐fine intergrid transfer operators. Previously, uniform estimates were obtained for problems with full elliptic regularity, whereas these estimates are derived with less than full elliptic regularity here. Applications to the nonconforming P1, rotated Q1, and Wilson finite elements are analyzed. The result applies to the mixed method based on finite elements that are equivalent to these nonconforming elements. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 203–217, 2002; DOI 10.1002/num.10004  相似文献   

2.
This article deals with moving finite element methods by use of the time-discontinuous Galerkin formulation in combination with oriented space–time meshes. A principle for mesh orientation in space–time based on minimization of the residual, related to adaptive error control via an a posteriori error estimate, is presented. The relation to Miller's moving finite element method is discussed. The article deals with scalar problems; systems will be treated in a companion article. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:251–262, 1998  相似文献   

3.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

4.
A space‐time finite element method is introduced to solve the linear damped wave equation. The scheme is constructed in the framework of the mixed‐hybrid finite element methods, and where an original conforming approximation of H(div;Ω) is used, the latter permits us to obtain an upwind scheme in time. We establish the link between the nonstandard finite difference scheme recently introduced by Mickens and Jordan and the scheme proposed. In this regard, two approaches are considered and in particular we employ a formulation allowing the solution to be marched in time, i.e., one only needs to consider one time increment at a time. Numerical results are presented and compared with the analytical solution illustrating good performance of the present method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

5.
In this article, a novel dual‐primal mixed formulation for second‐order elliptic problems is proposed and analyzed. The Poisson model problem is considered for simplicity. The method is a Petrov—Galerkin mixed formulation, which arises from the one‐element formulation of the problem and uses trial functions less regular than the test functions. Thus, the trial functions need not be continuous while the test functions must satisfy some regularity constraint. Existence and uniqueness of the solution are proved by using the abstract theory of Nicolaides for generalized saddle‐point problems. The Helmholtz Decomposition Principle is used to prove the inf‐sup conditions in both the continuous and the discrete cases. We propose a family of finite elements valid for any order, which employs piecewise polynomials and Raviart—Thomas elements. We show how the method, with this particular choice of the approximation spaces, is linked to the superposition principle, which holds for linear problems and to the standard primal and dual formulations, addressing how this can be employed for the solution of the final linear system. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 137–151, 2001  相似文献   

6.
In this article, we study fast discontinuous Galerkin finite element methods to solve a space‐time fractional diffusion‐wave equation. We introduce a piecewise‐constant discontinuous finite element method for solving this problem and derive optimal error estimates. Importantly, a fast solution technique to accelerate Toeplitz matrix‐vector multiplications which arise from discontinuous Galerkin finite element discretization is developed. This fast solution technique is based on fast Fourier transform and it depends on the special structure of coefficient matrices. In each temporal step, it helps to reduce the computational work from required by the traditional methods to log , where is the size of the coefficient matrices (number of spatial grid points). Moreover, the applicability and accuracy of the method are verified by numerical experiments including both continuous and discontinuous examples to support our theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2043–2061, 2017  相似文献   

7.
We deal with the numerical solution of a scalar nonstationary nonlinear convection‐diffusion equation. We employ a combination of the discontinuous Galerkin finite element (DGFE) method for the space as well as time discretization. The linear diffusive and penalty terms are treated implicitly whereas the nonlinear convective term is treated by a special higher order explicit extrapolation from the previous time step, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the L(L2) –norm and the L2(H1) –seminorm with respect to the mesh size h and time step τ. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1456–1482, 2010  相似文献   

8.
In this paper, we propose a space‐time spectral method for solving a class of time fractional convection diffusion equations. Because both fractional derivative and spectral method have global characteristics in bounded domains, we propose a space‐time spectral‐Galerkin method. The convergence result of the method is proved by providing a priori error estimate. Numerical results further confirm the expected convergence rate and illustrate the versatility of our method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Liggett and Steif (2006) proved that, for the supercritical contact process on certain graphs, the upper invariant measure stochastically dominates an i.i.d. Bernoulli product measure. In particular, they proved this for and (for infection rate sufficiently large) d‐ary homogeneous trees Td. In this paper, we prove some space‐time versions of their results. We do this by combining their methods with specific properties of the contact process and general correlation inequalities. One of our main results concerns the contact process on Td with . We show that, for large infection rate, there exists a subset Δ of the vertices of Td, containing a “positive fraction” of all the vertices of Td, such that the following holds: The contact process on Td observed on Δ stochastically dominates an independent spin‐flip process. (This is known to be false for the contact process on graphs having subexponential growth.) We further prove that the supercritical contact process on observed on certain d‐dimensional space‐time slabs stochastically dominates an i.i.d. Bernoulli product measure, from which we conclude strong mixing properties important in the study of certain random walks in random environment.  相似文献   

10.
Two coupled PDEs, where one has a diffusion term and the other does not, are defined to be space‐dimension systems. We show how to construct nonstandard finite difference schemes for such systems and demonstrate that they are positivity‐preserving. These methods also allow the calculation of an explicit functional relationships between the time and space step‐sizes. The case of water flowing through fractured bedrock is used to illustrate our procedure. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

11.
In this paper, we consider a nonhomogeneous space‐time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the first‐order or second‐order time derivative by the Caputo fractional derivative , α > 0 and the Laplacian operator by the fractional Laplacian ( ? Δ)β ∕ 2, β ∈ (0,2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate Mittag‐Leffler type functions. Special cases of solutions are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Fractional advection‐dispersion equations are used in groundwater hydrologhy to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper we present two reliable algorithms, the Adomian decomposition method and variational iteration method, to construct numerical solutions of the space‐time fractional advection‐dispersion equation in the form of a rabidly convergent series with easily computable components. The fractional derivatives are described in the Caputo sense. Some examples are given. Numerical results show that the two approaches are easy to implement and accurate when applied to space‐time fractional advection‐dispersion equations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

13.
Smart transportation technologies require real‐time traffic prediction to be both fast and scalable to full urban networks. We discuss a method that is able to meet this challenge while accounting for nonlinear traffic dynamics and space‐time dependencies of traffic variables. Nonlinearity is taken into account by a union of non‐overlapping linear regimes characterized by a sequence of temporal thresholds. In each regime, for each measurement location, a penalized estimation scheme, namely the adaptive absolute shrinkage and selection operator (LASSO), is implemented to perform model selection and coefficient estimation simultaneously. Both the robust to outliers least absolute deviation estimates and conventional LASSO estimates are considered. The methodology is illustrated on 5‐minute average speed data from three highway networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This article concerns with incorporating wavelet bases into existing streamline upwind Petrov‐Galerkin (SUPG) methods for the numerical solution of nonlinear hyperbolic conservation laws which are known to develop shock solutions. Here, we utilize an SUPG formulation using continuous Galerkin in space and discontinuous Galerkin in time. The main motivation for such a combination is that these methods have good stability properties thanks to adding diffusion in the direction of streamlines. But they are more expensive than explicit semidiscrete methods as they have to use space‐time formulations. Using wavelet bases we maintain the stability properties of SUPG methods while we reduce the cost of these methods significantly through natural adaptivity of wavelet expansions. In addition, wavelet bases have a hierarchical structure. We use this property to numerically investigate the hierarchical addition of an artificial diffusion for further stabilization in spirit of spectral diffusion. Furthermore, we add the hierarchical diffusion only in the vicinity of discontinuities using the feature of wavelet bases in detection of location of discontinuities. Also, we again use the last feature of the wavelet bases to perform a postprocessing using a denosing technique based on a minimization formulation to reduce Gibbs oscillations near discontinuities while keeping other regions intact. Finally, we show the performance of the proposed combination through some numerical examples including Burgers’, transport, and wave equations as well as systems of shallow water equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2062–2089, 2017  相似文献   

15.
In this work, we study the convergence behavior of a recently developed space‐time conservation element and solution element method for solving conservation laws. In particular, we apply the method to a one‐dimensional time‐dependent convection‐diffusion equation possibly with high Peclet number. We prove that the scheme converges and we obtain an error bound. This method performs well even for strong convection dominance over diffusion with good long‐time accuracy. Numerical simulations are performed to verify the results. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 64–78, 2001  相似文献   

16.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Summary. We present an adaptive finite element method for solving elliptic problems in exterior domains, that is for problems in the exterior of a bounded closed domain in , . We describe a procedure to generate a sequence of bounded computational domains , , more precisely, a sequence of successively finer and larger grids, until the desired accuracy of the solution is reached. To this end we prove an a posteriori error estimate for the error on the unbounded domain in the energy norm by means of a residual based error estimator. Furthermore we prove convergence of the adaptive algorithm. Numerical examples show the optimal order of convergence. Received July 8, 1997 /Revised version received October 23, 1997  相似文献   

18.
This paper is devoted to the analysis of a linearized theta‐Galerkin finite element method for the time‐dependent coupled systems resulting from microsensor thermistor problems. Hereby, we focus on time discretization based on θ‐time stepping scheme with including the standard Crank‐Nicolson ( ) and the shifted Crank‐Nicolson ( , where δ is the time‐step) schemes. The semidiscrete formulation in space is presented and optimal error bounds in L2‐norm and the energy norm are established. For the fully discrete system, the optimal error estimates are derived for the standard Crank‐Nicolson, the shifted Crank‐Nicolson, and the general case where with k=0,1 . Finally, numerical simulations that validate the theoretical findings are exhibited.  相似文献   

19.
This paper aims to formulate the fractional quasi‐inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz‐Kaup‐Newell‐Segur (AKNS) method be applied to the space–time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi‐conservation laws for the considered fractional equations from the defined fractional quasi AKNS‐like system. The nonlinear fractional differential equations to be studied are the space–time fractional versions of the Kortweg‐de Vries equation, modified Kortweg‐de Vries equation, the sine‐Gordon equation, the sinh‐Gordon equation, the Liouville equation, the cosh‐Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.  相似文献   

20.
We present a partition of unity finite element method for wave propagation problems in the time domain using an explicit time integration scheme. Plane wave enrichment functions are introduced at the finite elements nodes which allows for a coarse mesh at low order polynomial shape functions even at high wavenumbers. The initial condition is formulated as a Galerkin approximation in the enriched function space. We also show the possibility of lumping the mass matrix which is approximated as a block diagonal system. The proposed method, with and without lumping, is validated using three test cases and compared to an implicit time integration approach. The stability of the proposed approach against different factors such as the choice of wavenumber for the enrichment functions, the spatial discretization, the distortions in mesh elements or the timestep size, is tested in the numerical studies. The method performance is measured for the solution accuracy and the CPU processing times. The results show significant advantages for the proposed lumping approach which outperforms other considered approaches in terms of stability. Furthermore, the resulting block diagonal system only requires a fraction of the CPU time needed to solve the full system associated with the non-lumped approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号