首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ferromagnetic shape memory alloys (FSMAs) such as Ni–Mn–Ga have attracted significant attention over the last few years. As actuators, these materials offer high energy density, large stroke, and high bandwidth. These properties make FSMAs potential candidates for a new generation of actuators. The preliminary dynamic characterization of Ni–Mn–Ga illustrates evident nonlinear behaviors including hysteresis, saturation, first cycle effect, and dead zone. In this paper, in order to precisely control the position of FSMA actuators a mathematical model is developed. The Ni–Mn–Ga actuator model consists of the dynamic model of the actuator, the kinematics of the actuator, the constitutive model of the FSMA material, the reorientation kinetics of the FSMA material, and the electromagnetic model of the actuator. Furthermore, a constitutive model is proposed to take into account the elastic deformation as well as the reorientation. Simulation results are presented to demonstrate the dynamic behavior of the actuator.  相似文献   

3.
Shape memory alloys are nowadays already established as a material which is able to solve exceptional tasks in practical applications. Particularly, its utilization in the field of medical technologies increases steadily. For example micro tools (staple, catheters) and implants (coronary stents) are made out of Nickel-Titanium well known as a basic shape memory alloy. Apart from the advantages like the avoidance of auxiliary components and joints in the system and to utilize the high volume specific work of shape memory alloys, NiTi alloys exhibit a good biocompatibility. This property is necessary with regard to either permanent or temporary implants. To optimize the use of NiTi alloys in the scope of medical technologies, the support of the development of applicable tools by numerical simulations is highly recommended. However the complex material behaviour containing a profoundly thermomechanical coupling poses indeed a big challenge to the material modeling and its implementation into a finite element code. Particularly, the material model proposed by Helm [1] proves to be a firm model containing the most common properties of shape memory alloys, as the pseudoelasticity, the shape memory effect and the two-way effect. In the present contribution the FE modelling of a medical staple used in foot surgery is presented by considering the model of Helm which was investigated by the authors to improve its performance in the finite element method [2]. The foot staple, produced by a group of members of the SFB 459 which is funded by the DFG, avails the shape memory effect to excite the desired clamping effect [3]. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This contribution is concerned with the formulation of a 1D-constitutive model accounting for the pseudoelastic behavior of shape memory alloys. The stress-strain-relationship is idealized by a hysteresis both in the compression as in the tension loading range. It is characterized by an upper loading path, which is to be ascribed to the transformation of the lattice to a martensitic structure. Unloading the material, a lower path is described, because of the reverse transformation into austenitic lattice. The constitutive model is based on a switching criterion which serves as a potential function for the evolution of the internal state variables. The model distinguishes between local and global variables to describe the hysteresis effects for the compression and tension range. A strain driven algorithm which captures the complete nonlinear material behavior is presented. The boundary value problem is solved for a truss element applying the finite element method. A consistent linearization of the nonlinear equations is derived. Simple examples will demonstrate the applicability of the proposed model. For future developments the usage of shape memory alloys within civil engineering structures is aimed. The advantage of the material is the very good damping behavior and the potential to overcome great strains. Both properties are distinguished to be of engineering interest. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
NiTi alloys open up new fields of application on the basis of their distinctive thermomechanical properties. Many options of practical application of shape memory alloys are imaginable. For example catheters or stents made of NiTi play an important role in medical technology. Thus the further development and optimisation of simulation tools for shape memory alloys (SMA) structures will play an important role in the future. Based on the powerful material model of Helm [1] the present contribution focuses on the coupling between mechanical and thermal fields. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Thorsten Bartel  Klaus Hackl 《PAMM》2004,4(1):298-299
This work is dealing with solid to solid phase transformations in shape‐memory‐alloys and the simulation of the corresponding characteristic phenomena, e.g. pseudoelasticity and the shape‐memory‐effect. In particular it focuses on the micromechanical behaviour of the material and the appearance of microstructures. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The macroscopic mechanical behavior of many functional materials crucially depends on the formation and evolution of their microstructure. When considering martensitic shape memory alloys, this microstructure typically consists of laminates with coherent twin boundaries. We suggest a variational-based phase field model for the dissipative evolution of microstructure with coherence-dependent interface energy and construct a suitable gradient-extended incremental variational framework for the proposed dissipative material. We use our model to predict laminate microstructure in martensitic CuAlNi. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We use the principle of maximum dissipation for thermo-mechanically coupled modeling of poly-crystalline shape memory alloys (SMA). This modeling scheme demands approaches for both Helmholtz free energy and dissipation. For time-independent processes, dissipation is usually modeled by the norm of the internal variable's rate times a factor. We show that for SMAs this factor is not an additional modeling parameter. In contrast, it can be calculated from the Helmholtz free energy. This reduces the number of model parameters and provides furthermore an interesting effect of the model which allows to display the material behavior in an even more realistic manner. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
一个新的形状记忆合金模型   总被引:1,自引:0,他引:1  
借助于Tanaka用一维形核动力学方程导出的指数形式的相变百分数,建立了一个新的形状记忆合金本构模型.提出了不同相变条件下的可恢复形状记忆应变的表达式;考虑了材料在变形过程中马氏体的重定向作用;克服了Tanaka系列模型不能描述当材料为完全马氏体状态时的力学行为的缺点.本模型较现有的形状记忆合金本构模型均简单,便于应用,实验证明了模型的正确性.  相似文献   

10.
Philipp Junker  Klaus Hackl 《PAMM》2011,11(1):391-392
The name shape memory originates from the material's capability to recover its original shape after an apparent plastic deformation. The secret of this property lies in the specific microstructure. During mechanical loading, alloys of this particular kind change their crystallographic structure from randomly orientated martensite to ordered martensite. With austenite as high-temperature inter-state induced by heat supply, a recovery from the ordered to the unordered martensite is possible. This is accompanied by a macroscopic "healing" process. We apply our material model for shape-memory alloys to this special property and present numerical results. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
形状记忆合金(SMA)一直被作为智能材料开发,并被用于阻尼器、促动器和智能传感器元件.形状记忆合金(SMA)的一项重要特性,是它具有恢复在机械加卸载周期下产生的大变形而不表现出永久变形的能力.该文旨在介绍一种由应力产生的相变且可以描述马氏体和奥氏体之间的超弹性滞回环现象本构方程.形状记忆合金的马氏体系数假设为应力偏张量的函数,因此形状记忆合金在相变过程中锁定体积.本构模型是在大变形有限元的基础上执行的,采用了现时构型Lagrange大变形算法.为了方便地使用Cauchy应力和线性应变本构关系,使用了与旋转无关的Jaumann应力增率计算应力.数值分析结果表明,相变引起的超弹性滞回环可以有效地通过该文提出的本构方程和大变形有限元模拟.  相似文献   

12.
Shape memory alloys show the well known effect of pseudo-elasticity associated with the formation of two stress plateaus in the stress/strain diagram for tension tests. Due to cyclic loading, the stress plateaus decrease with every load cycle, particularly the upper one. This important effect of functional fatigue results from plastic deformations that are produced during solid-solid phase transformations between the austenitic and martensitic state. Outgoing from a polycrystalline approach for shape memory alloys we develop a micromechanical material model that is based on the Principle of the Minimum of the Dissipation Potential and predicts the evolution of plastic strains. Therefore, only a small number of material parameters is necessary and additionally, only a few assumptions are sufficient to model the effect of functional fatigue. We present yield functions as well as evolution equations for the volume fractions of austenite and martensite, and the plastic strains. Furthermore, we show an exemplary calculation for Nickel Titanium and compare it with experimental measurements to demonstrate the ability of our model. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The purpose of this work is the modeling and simulation of the material behavior of aluminum alloys during extrusion, cooling and metal forming processes. In particular, the alloys of the 6000 series (Al-Mg-Si) and 7000 series (Al-Zn-Mg) are relevant here. Under the corresponding conditions, their behavior is controlled mainly by dynamic recovery during the extrusion and static recrystallization during cooling. The current material model is based on the role of the energy stored in the material during extrusion as the driving force for microstructural evolution. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The purpose of this work is the modeling and simulation of the material behavior of aluminum alloys during extrusion, cooling and metal forming processes. In particular, the alloys of the 6000 series (Al-Mg-Si) and 7000 series (Al-Zn-Mg) are relevant here. Under the corresponding conditions, their behavior is controlled mainly by dynamic recovery during the extrusion and static recrystallization during cooling. The current material model is based on the role of the energy stored in the material during extrusion as the driving force for microstructural evolution. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The superelasticity and shape memory effect in NiTi alloys are examined on the basis of micromechanics within the energy minimization framework. We describe the behaviour of polycrystalline shape‐memory alloys via orientation‐distribution of the various martensite‐variants (domains) present in the material. Stress‐strain curves are presented and special attention is payed to the volume fraction of martensite for specific NiTi alloys (Nitinol) specimen under uniaxial tension. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Stefan Wilmanns  Rolf Mahnken 《PAMM》2007,7(1):4060037-4060038
Experimental results of shape memory alloys show a pronounced asymmetric behaviour between tension, compression and shear. For simulation of these effects in the constitutive equations different transformation strain tensors are introduced. These are related to the different variants for the multi-variant- and detwinned-martensite as a consequence of different stress states. In the framework of plasticity the concept of stress mode dependent weighting functions is applied in order to characterize the different stress states. Verification of the proposed methodology is succeeded for simulation of the pseudoelastic behaviour of shape memory alloys with different hardening characteristics in tension, compression and shear. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Shape memory alloys show a very complex material behavior associated with a diffusionless solid/solid phase transformation between austenite and martensite. Due to the resulting (thermo-)mechanical properties – namely the effect of pseudoelasticity and pseudoplasticity – they are very promising materials for the current and future technical developments. However, the martensitic phase transformation comes along with a simultaneous plastic deformation and thus, the effect of functional fatigue. We present a variational material model that simulates this effect based on the principle of the minimum of the dissipation potential. We use a combined Voigt/Reuss bound and a coupled dissipation potential to predict the microstructural developments in the polycrystalline material. We present the governing evolution equations for the internal variables and yield functions. In addition, we show some numerical results to prove our model's ability to predict the shape memory alloys' complex inner processes. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Philipp Junker  Klaus Hackl 《PAMM》2009,9(1):339-340
Based on a micormechanical model we describe the material behaviour of specimens made of shape memory alloys by a finite element implementation. These materials undergo solid to solid phase transformations during loading and unloading which determine the characteristic pseudo-elastic or pseudo-plastic material response. Phase transitions, orientation distribution (pole figures) and the influence of pre-texture on the specimen, due to some previous treatment like rolling, are discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A phenomenological material law for pseudo elastic NiTi shape memory alloys (SMA) is presented. The model was derived from a thermodynamical framework and is well-suited to describe the thermomechanical coupled behaviour of the material. The material law, which was originally derived for small deformations, was extended to finite deformations using the Eulerian frame, in particular Hencky's logarithmic strain and the logarithmic rate. A first emphasis is on the physical interpretation of the material parameters and their identification. A second focus lies in the presentation of a structural example for the implementation of the material law into a commercial Finite Element code. Additionally a comparison of the numerical and experimental data of the presented example is performed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Shape memory polymers are novel materials that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such as heating. In this paper, we develop constitutive equations to model the mechanical behavior of crystallizable shape memory polymers. Crystallizable shape memory polymers are called crystallizable because the temporary shape is fixed by a crystalline phase, while return to the original shape is due to the melting of this crystalline phase. The modeling is done using a framework that was developed recently for studying crystallization in polymers ([28], [25], [27], [31]) and is based on the theory of multiple natural configurations. In this paper we formulate constitutive equations for the original amorphous phase and the semi-crystalline phase that is formed after the onset of crystallization. In addition we model the melting of the crystalline phase to capture the return of the polymer to its original shape. The model has been used to simulate a typical uni-axial cycle of deformation, the results of this simulation compare very well with experimental data. In addition to this we also simulate circular shear of a hollow cylinder and present results for different cases in this geometry. Received: January 5, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号