首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salsola cyclophylla, an edible halophyte, is traditionally used for inflammation and pain. To confirm the claimed anti-inflammatory and analgesic properties, a detailed study on respective pharmacological actions was undertaken. The activities are contemplated to arise from its phytoconstituents. The LC-MS analysis of S. cyclophylla 95% aqueous-ethanolic extract revealed the presence of 52 compounds belonging to phenols, flavonoids, coumarins, and aliphatics class. A high concentration of Mn, Fe, and Zn was detected by atomic absorption spectroscopic analysis. The ethyl acetate extract showed the highest flavonoid contents (5.94 ± 0.04 mg/g, Quercetin Equivalents) and Fe2+-chelation (52%) potential with DPPH radicals-quenching IC50 at 1.35 ± 0.16 mg/mL, while the aqueous ethanolic extract exhibited maximum phenolics contents (136.08 ± 0.12 mg/g, gallic acid equivalents) with DPPH scavenging potential at IC50 0.615 ± 0.06 mg/mL. Aqueous ethanolic extract and standard quercetin DPPH radicals scavenging’s were equal potent at 10 mg/mL concentrations. The aqueous ethanolic extract showed highest analgesic effect with pain reduction rates 89.86% (p = 0.03), 87.50% (p < 0.01), and 99.66% (p = 0.0004) after 60, 90, and 120 min, respectively. Additionally, aqueous ethanolic extract exhibited the highest anti-inflammation capacity at 41.07% (p < 0.0001), 34.51% (p < 0.0001), and 24.82% (p < 0.0001) after 2, 3, and 6 h of extract’s administration, respectively. The phytochemical constituents, significant anti-oxidant potential, remarkable analgesic, and anti-inflammatory bioactivities of extracts supported the traditionally claimed anti-inflammatory and analgesic plant activities.  相似文献   

2.
The aim of the present study was to investigate the changes in the content of phytochemical compounds and in vitro antioxidant, antibacterial, and anti-inflammatory activities of Teucrium polium L. aerial parts and root methanolic extracts at different phenological stages (vegetative, flowering, and seeding). The T. polium extracts were analyzed using gas chromatography–mass spectrometry (GC-MS), and their antioxidant properties were tested with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), ferrous ions (Fe2+), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. Forty-nine compounds were identified with the majority of germacrene D, t-cadinol, β-pinene, carvacrol, bicyclogermacrene, α-pinene, and limonene. The results show that the extracts significantly differ between different phenological stages of the plant material used in terms of the phytochemical composition (total phenolic compounds, total flavonoids, total alkaloids, and total saponin contents) and bioactivities (antioxidant, antibacterial, and anti-inflammatory) (p < 0.05). The highest total contents of phenolics (72.4 ± 2.5 mg gallic acid equivalent (GAE)/g dry weight), flavonoids (36.2 ± 3.1 mg quercetin equivalent (QE)/g dry weight), alkaloids (105.7 ± 2.8 mg atropine equivalent (AE)/g dry weight), and saponins (653 ± 6.2 mg escin equivalent (EE)/g dry weight), as well as antioxidant, antibacterial, and anti-inflammatory activities, were measured for the extract of the aerial parts obtained at the flowering stage. The minimum inhibitory concentration (MIC) values for the extracts were varied within 9.4–300 µg/mL, while the minimum bactericidal concentration (MBC) values were varied within 18.75–600 µg/mL. In addition, they were more active on Gram-positive bacteria than Gram-negative bacteria. The data of this work confirm that the T. polium extracts have significant biological activity and hence can be used in the pharmaceutical industry, clinical applications, and medical research, as well as cosmetic and food industries.  相似文献   

3.
Natural flavonoids, in addition to some of their synthetic derivatives, are recognized for their remarkable medicinal properties. The present study was designed to investigate the in vitro antioxidant and in vivo antistress effect of synthetic flavonoids (flavones and flavonols) in mice, where stress was induced by injecting acetic acid and physically through swimming immobilization. Among the synthesized flavones (F1–F6) and flavonols (OF1–OF6), the mono para substituted methoxy containing F3 and OF3 exhibited maximum scavenging potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) with IC50 of 31.46 ± 1.46 μg/mL and 25.54 ± 1.21 μg/mL, respectively. Minimum antioxidant potential was observed for F6 and OF6 with IC50 values of 174.24 ± 2.71 μg/mL and 122.33 ± 1.98 μg/mL, respectively, in comparison with tocopherol. The ABTS scavenging activity of all the synthesized flavones and flavonols were significantly higher than observed with DPPH assay, indicating their potency as good antioxidants and the effectiveness of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) assay in evaluating antioxidant potentials of chemical substances. The flavonoids-treated animals showed a significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) reduction in the number of writhes and an increase in swimming endurance time. Stressful conditions changed plasma glucose, cholesterol and triglyceride levels, which were used as markers when evaluating stress in animal models. The level of these markers was nearly brought to normal when pre-treated with flavones and flavonols (10 mg/kg) for fifteen days in experimental animals. These compounds also considerably reduced the levels of lipid peroxidation (TBARS: Thiobarbituric acid reactive substances), which was significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) compared to the control group. A significant rise in the level of catalase and SOD (super oxide dismutase) was also observed in the treated groups. Diazepam (2 mg/kg) was used as the standard drug. Additionally, the flavonoids markedly altered the weight of the adrenal glands, spleen and brain in stress-induced mice. The findings of the study suggest that these flavonoids could be used as a remedy for stress and are capable of ameliorating diverse physiological and biochemical alterations associated with stressful conditions. However, further experiments are needed to confirm the observed potentials in other animal models, especially in those with a closer resemblance to humans. Toxicological evaluations are also equally important.  相似文献   

4.
Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25–14.14 mg GAE/g (total phenolics), 3.62–4.67 mg QE/g (total flavonoids), 3.63–6.29 mg/g (tannins), 3.66–4.31% (phytate), 8.92–12.11 µg/g (total xanthophylls), 2.42–2.89 µg/g (total β-carotene), and 3.17–3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH (SC50: 9.07–26.35 mg/mL) and ABTS•+ (2.65–7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64–0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28–52.55 mg/mL and 47.72–63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH SC50 (p < 0.01, r = −0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = −0.836) and α-glucosidase IC50 (p < 0.05, r = −0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.  相似文献   

5.
Ficus deltoidea var. deltoidea is used as traditional medicine for diabetes, inflammation, and nociception. However, the antimutagenic potential and cytoprotective effects of this plant remain unknown. In this study, the mutagenic and antimutagenic activities of F. deltoidea aqueous extract (FDD) on both Salmonella typhimurium TA 98 and TA 100 strains were assessed using Salmonella mutagenicity assay (Ames test). Then, the cytoprotective potential of FDD on menadione-induced oxidative stress was determined in a V79 mouse lung fibroblast cell line. The ferric-reducing antioxidant power (FRAP) assay was conducted to evaluate FDD antioxidant capacity. Results showed that FDD (up to 50 mg/mL) did not exhibit a mutagenic effect on either TA 98 or TA 100 strains. Notably, FDD decreased the revertant colony count induced by 2-aminoanthracene in both strains in the presence of metabolic activation (p < 0.05). Additionally, pretreatment of FDD (50 and 100 µg/mL) demonstrated remarkable protection against menadione-induced oxidative stress in V79 cells significantly by decreasing superoxide anion level (p < 0.05). FDD at all concentrations tested (12.5–100 µg/mL) exhibited antioxidant power, suggesting the cytoprotective effect of FDD could be partly attributed to its antioxidant properties. This report highlights that F. deltoidea may provide a chemopreventive effect on mutagenic and oxidative stress inducers.  相似文献   

6.
Currently, the potential utilization of natural plant-derived extracts for medicinal and therapeutic purposes has increased remarkably. The current study, therefore, aimed to assess the antimicrobial and anti-inflammatory activity of modified solvent evaporation-assisted ethanolic extract of Woodfordia fruticosa flowers. For viable use of the extract, qualitative analysis of phytochemicals and their identification was carried out by gas chromatography–mass spectroscopy. Analysis revealed that phenolic (65.62 ± 0.05 mg/g), flavonoid (62.82 ± 0.07 mg/g), and ascorbic acid (52.46 ± 0.1 mg/g) components were present in high amounts, while β-carotene (62.92 ± 0.02 µg/mg) and lycopene (60.42 ± 0.8 µg/mg) were present in lower amounts. The antimicrobial proficiency of modified solvent-assisted extract was evaluated against four pathogenic bacterial and one fungal strain, namely Staphylococcus aureus (MTCC 3160), Klebsiella pneumoniae (MTCC 3384), Pseudomonas aeruginosa (MTCC 2295), and Salmonella typhimurium (MTCC 1254), and Candida albicans (MTCC 183), respectively. The zone of inhibition was comparable to antibiotics streptomycin and amphotericin were used as a positive control for pathogenic bacterial and fungal strains. The extract showed significantly higher (p < 0.05) anti-inflammatory activity during the albumin denaturation assay (43.56–86.59%) and HRBC membrane stabilization assay (43.62–87.69%). The extract showed significantly (p < 0.05) higher DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay and the obtained results are comparable with BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene) with percentage inhibitions of 82.46%, 83.34%, and 84.23%, respectively. Therefore, the obtained results concluded that ethanolic extract of Woodfordia fruticosa flowers could be utilized as a magnificent source of phenols used for the manufacturing of value-added food products.  相似文献   

7.
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.  相似文献   

8.
The Catharanthus roseus plant has been used traditionally to treat diabetes mellitus. Scientific evidence supporting the antidiabetic effects of this plant’s active ingredient-vindoline has not been fully evaluated. In this study, extracts of C. roseus and vindoline were tested for antioxidant activities, alpha amylase and alpha glucosidase inhibitory activities and insulin secretory effects in pancreatic RIN-5F cell line cultured in the absence of glucose, at low and high glucose concentrations. The methanolic extract of the plant showed the highest antioxidant activities in addition to the high total polyphenolic content (p < 0.05). The HPLC results exhibited increased concentration of vindoline in the dichloromethane and the ethylacetate extracts. Vindoline showed noticeable antioxidant activity when compared to ascorbic acid at p < 0.05 and significantly improved the in vitro insulin secretion. The intracellular reactive oxygen species formation in glucotoxicity-induced cells was significantly reduced following treatment with vindoline, methanolic and the dichloromethane extracts when compared to the high glucose untreated control (p < 0.05). Plant extracts and vindoline showed weaker inhibitory effects on the activities of carbohydrate metabolizing enzymes when compared to acarbose, which inhibited the activities of the enzymes by 80%. The plant extracts also exhibited weak alpha amylase and alpha glucosidase inhibitory effects.  相似文献   

9.
This study investigated the bioactive compounds, anti-inflammatory, anti-nociceptive, and antioxidant properties of the ethanolic leaf fraction of Sida linifolia (ELFSL). The in vitro anti-inflammatory study employed membrane stabilization, phospholipase A2, platelet aggregation, albumin denaturation, and protease inhibition assays. Intraperitoneal injection of freshly prepared carrageenan solution (0.1 mL of 0.01 g/mL), undiluted egg albumin (0.1 mL), acetic acid (0.6 % (v/v) (10 mL/kg bw), and formalin solution (0.02 mL of 1 % v/v) into mice hind paw, were used to evaluate the anti-inflammatory and anti-nociceptive mechanisms, respectively. In vitro antioxidant potentials were determined using 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), nitric oxide (NO), ferric reducing power (FRAP), and total antioxidant capacity (TAC) assays. Varying quantities of flavonoids, phenols, tannins, saponins, terpenoids, steroids, and alkaloids, were detected in the fraction. GC-FID phytochemical profiling of ELFSL revealed a high level of epicatechin, moderate levels of catechin, kaempferol, flavone, naringenin, rutin flavanones, tannins, sapogenins, proanthocyanidin, and steroids, and small amounts of sparteine, resveratrol, and lunamarine. The ELFSL exerted excellent dose-dependent in vitro anti-inflammatory activities comparable with standard drugs (aspirin/prednisolone). The LD50 test showed safety up to 5000 mg/kg body weight (per oral) ELFSL. Interestingly, mice pre-administered various doses (200, 400, 600 mg/kg bw, po) of ELFSL showed significant (P < 0.05) reduction in edema, writhing, and time spent licking paw in all phases compared with control and were at par with 100 mg/kg bw (po) aspirin. The result also registered good concentration-dependent antioxidant potentials for ELFSL and was comparable to standards (gallic acid, butylated hydroxytoluene, and ascorbic acid). These imply that ELFSL possesses excellent antioxidant, anti-inflammatory, and anti-nociceptive potentials mediated by peripheral and central mechanisms.  相似文献   

10.
The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.  相似文献   

11.
Peganum harmala (P. harmala) belongs to the family Zygophyllaceae, and is utilized in the traditional medicinal systems of Pakistan, China, Morocco, Algeria, and Spain to treat several chronic health disorders. The aim of the present study was to identify the chemical constituents and to evaluate the antioxidant, anti-inflammatory, and toxicity effects of P. harmala extracts both in vitro and in vivo. Sequential crude extracts including 100% dichloromethane, 100% methanol, and 70% aqueous methanol were obtained and their antioxidant and anti-inflammatory effects evaluated both in vitro and in vivo. The anti-inflammatory effect of the extract was investigated using the carrageenan-induced paw edema method in mice, whereas the toxicity of the most active extract was evaluated using an acute and subacute toxicity rat model. In addition, we have used the bioassay-guided approach to obtain potent fractions, using solvent–solvent partitioning and reversed phase high performance liquid chromatography from active crude extracts; identification and quantification of compounds from the active fractions was achieved using electrospray ionization mass spectrometry and high performance liquid chromatography techniques. Results revealed that the 100% methanol extract of P. harmala exhibits significant in vitro antioxidant activity in DPPH assay with an IC50 of 49 µg/mL as compared to the standard quercetin with an IC50 of 25.4 µg/mL. The same extract exhibited 63.0% inhibition against serum albumin denaturation as compared to 97% inhibition by the standard diclofenac sodium in an in vitro anti-inflammatory assay, and in vivo anti-inflammatory against carrageenan-induced paw edema (75.14% inhibition) as compared to 86.1% inhibition caused by the standard indomethacin. Furthermore, this extract was not toxic during a 14 day trial of acute toxicity when given at a dose of 3 g/kg, indicating that the lethal dose (LD50) of P. harmala methanol extract was greater than 3 g/kg. P. harmala methanolic fraction 2 obtained using bioassay-guided fractionation showed the presence of quinic acid, peganine, harmol, harmaline, and harmine, confirmed by electrospray ionization mass spectrometry and quantified using external standards on high performance liquid chromatography. Taken all together, the current investigation further confirms the antioxidant, anti-inflammatory, and safety aspects of P. harmala, which justifies its use in folk medicine.  相似文献   

12.
Postovulatory aging of the mammalian oocytes causes deterioration of oocytes through several factors including oxidative stress. Keeping that in mind, we aimed to investigate the potential of a well-known antioxidant, resveratrol (RV), to evaluate the adverse effects of postovulatory aging in porcine oocytes. After in vitro maturation (IVM), a group of (25–30) oocytes (in three replicates) were exposed to 0, 1, 2, and 4 μmol/L of RV, respectively. The results revealed that the first polar body (PB1) extrusion rate of the oocytes significantly increased when the RV concentration reached up to 2 μmol/L (p < 0.05). Considering optimum RV concentration of 2 μmol/L, the potential of RV was evaluated in oocytes aged for 24 and 48 h. We used fluorescence microscopy to detect the relative level of reactive oxygen species (ROS), while GHS contents were measured through the enzymatic method. Our results revealed that aged groups (24 h and 48 h) treated with RV (2 μmol/L) showed higher (p < 0.05) ROS fluorescence intensity than the control group, but lower (p < 0.05) than untreated aged groups. The GSH content in untreated aged groups (24 h and 48 h) was lower (p < 0.05) than RV-treated groups, but both groups showed higher levels than the control. Similarly, the relative expression of the genes involved in antioxidant activity (CAT, GPXGSH-Px, and SOD1) in RV-treated groups was lower (p < 0.05) as compared to the control group but higher than that of untreated aged groups. Moreover, the relative mRNA expression of caspase-3 and Bax in RV-treated groups was higher (p < 0.05) than the control group but lower than untreated groups. Furthermore, the expression of Bcl-2 in the RV-treated group was significantly lower than control but higher than untreated aged groups. Taken together, our findings revealed that the RV can increase the expression of antioxidant genes by decreasing the level of ROS, and its potent antiapoptotic effects resisted against the decline in mitochondrial membrane potential in aged oocytes.  相似文献   

13.
The immune system plays an important role in maintaining body homeostasis. Recent studies on the immune-enhancing effects of ginseng saponins have revealed more diverse mechanisms of action. Maillard reaction that occurs during the manufacturing processes of red ginseng produces a large amount of Amadori rearrangement compounds (ARCs), such as arginyl-fructose (AF). The antioxidant and anti-hyperglycemic effects of AF have been reported. However, the possible immune enhancing effects of non-saponin ginseng compounds, such as AF, have not been investigated. In this study the effects of AF and AF-enriched natural product (Ginofos, GF) on proliferation of normal mouse splenocytes were evaluated in vitro and male BALB/c mice models. The proliferation of splenocytes treated with mitogens (concanavalin A, lipopolysaccharide) were further increased by addition of AF (p < 0.01) or GF (p < 0.01), in a dose dependent manner. After the 10 days of oral administration of compounds, changes in weights of spleen and thymus, serum immunoglobulin, and expression of cytokines were measured as biomarkers of immune-enhancing potential in male BALB/c mice model. The AF or GF treated groups had higher weights of the thymus (0.94 ± 0.25 and 0.86 ± 0.18, p < 0.05, respectively) than that of cyclophosphamide treated group (0.59 ± 0.18). This result indicates that AF or AF-enriched extract (GF) increased humoral immunity against CY-induced immunosuppression. In addition, immunoglobulin contents and expression of cytokines including IgM (p < 0.01), IgG (p < 0.05), IL-2 (p < 0.01), IL-4 (p < 0.01), IL-6 (p < 0.01), and IFN-γ (p < 0.05) were also significantly increased by supplementation of AF or GF. These results indicate that AF has immune enhancing effects by activation of adaptive immunity via increase of expression of immunoglobulins and cytokines such as IgM, IgG, IL-2, IL-4, IL-6 and thereby proliferating the weight of thymus. Our findings provide a pharmacological rationale for AF-enriched natural products such as ginseng and red ginseng that can possibly have immune-enhancement potential and should be further evaluated.  相似文献   

14.
Background: Myrtus communis (M. communis) is a wild aromatic plant used for traditional herbal medicine that can be demonstrated in insecticidal, antioxidant, anti-inflammatory, and antimicrobial activity of its essential oils (MCEO). Aim: The present study aimed to evaluate the prophylactic effects of M. communis essential oil (MCEO) against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice. Methods: Gas chromatography/mass spectrometry (GC/MS) analysis was performed to determine the chemical composition of MCEO. Mice were then orally administrated with MCEO at the doses of 100, 200, and 300 mg/kg/day and also atovaquone 100 mg/kg for 21 days. On the 15th day, the mice were infected with the intraperitoneal inoculation of 20–25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12 and IFN-γ in mice of each tested group were measured. Results: By GC/MS, the major constituents were α-pinene (24.7%), 1,8-cineole (19.6%), and linalool (12.6%), respectively. The results demonstrated that the mean number of T. gondii tissue cysts in experimental groups Ex1 (p < 0.05), Ex2 (p < 0.001) and Ex3 (p < 0.001) was meaningfully reduced in a dose-dependent manner compared with the control group (C2). The mean diameter of tissue cyst was significantly reduced in mice of the experimental groups Ex2 (p < 0.01) and Ex3 (p < 0.001). The results demonstrated that although the mRNA levels of IFN-γ and IL-12 were elevated in all mice of experimental groups, a significant increase (p < 0.001) was observed in tested groups of Ex2 and Ex3 when compared with control groups. Conclusion: The findings of the present study demonstrated the potent prophylactic effects of MCEO especially in the doses 200 and 300 mg/kg in mice infected with T. gondii. Although the exceptional anti-Toxoplasma effects of MCEO and other possessions, such as improved innate immunity and low toxicity are positive topics, there is, however, a need for more proof from investigations in this field.  相似文献   

15.
This study aimed to isolate, prepare and identify the main flavonoids from a standardized Smilax glabra flavonoids extract (SGF) using preparative HPLC, MS, 1H NMR and 13C NMR, determine the contents of these flavonoids using UPLC, then compare their pharmacological activities in vitro. We obtained six flavonoids from SGF: astilbin (18.10%), neoastilbin (11.04%), isoastilbin (5.03%), neoisoastilbin (4.09%), engeletin (2.58%) and (−)-epicatechin (1.77%). The antioxidant activity of six flavonoids were evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS+) radical scavenging activity and ferric reducing antioxidant power (FRAP). In addition, the anti-inflammatory activity of six flavonoids were evaluated by determining the production of cytokines (IL-1β, IL-6), nitric oxide (NO) using enzyme linked immunosorbent assay and the NF-κB p65 expression using Western blotting in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that (−)-epicatechin, astilbin, neoastilbin, isoastilbin and neoisoastilbin had strong antioxidant activities, not only in DPPH and ABTS+ radicals scavenging capacities, but in FRAP system. Furthermore, all the six flavonoids could significantly inhibit the secretion of IL-1β, IL-6, NO (p < 0.01) and the protein expression of NF-κB p-p65 (p < 0.01) in LPS-stimulated RAW264.7 cells. This study preliminarily verified the antioxidant and anti-inflammatory activities of six flavonoids in S. glabra.  相似文献   

16.
The methanol leaf extract of Mallotus oppositifolius was evaluated for anti-inflammatory activity in rats and mice using acute and chronic anti-inflammatory models with acetylsalicylate acid (aspirin) as the reference drug. The antioxidant activity was done in vitro using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-hydrazyl (DPPH) spectrophotometric assays. The extract dose dependently and significantly reduced paw edema volume in rats induced by carrageenan (p < 0.01), decreased croton oil-induced ear inflammation (p < 0.05), inhibited cotton pellet-induced granuloma in mice and reduced the rat paw thickness in formalin-induced arthritis.  相似文献   

17.
There is an increased interest in plum research because of their metabolites’ potential bioactivities. In this study, the phenolic profiles of Prunus domestica commercial cultivars (Methley, Pisardii and Satsuma) in Costa Rica were determined by Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry using a quadrupole-time-of-flight analyzer (UPLC-ESI-QTOF MS) on enriched phenolic extracts obtained through Pressurized Liquid Extraction (PLE) under acidic and neutral extraction conditions. In total, 41 different phenolic compounds were identified in the skin and flesh extracts, comprising 11 flavan-3-ols, 14 flavonoids and 16 hydroxycinnamic acids and derivatives. Neutral extractions for the skins and flesh from all of the cultivars yielded a larger number of compounds, and were particularly rich in the number of procyanidin trimers and tetramers when compared to the acid extractions. The total phenolic content (TPC) and antioxidant potential using the DPPH and ORAC methods exhibited better results for neutral extracts with Satsuma skins and Methley flesh, which showed the best values (685.0 and 801.6 mg GAE/g extract; IC50 = 4.85 and 4.39 µg/mL; and 12.55 and 12.22 mmol TE/g extract, respectively). A Two-Way ANOVA for cytotoxicity towards AGS gastric adenocarcinoma and SW620 colon adenocarcinoma indicated a significant difference (p < 0.05) for PLE conditions, with better results for neutral extractions, with Satsuma skin delivering the best results (IC50 = 60.7 and 46.7 µg/mL respectively) along with Methley flesh (IC50 = 76.3 and 60.9 µg/mL, respectively). In addition, a significant positive correlation was found between TPC and ORAC (r = 0.929, p < 0.05), as well as a significant negative correlation (p < 0.05) between TPC and cytotoxicity towards AGS and SW620 cell lines (r = −0.776, and −0.751, respectively). A particularly high, significant, negative correlation (p < 0.05) was found between the number of procyanidins and cytotoxicity against the AGS (r = −0.868) and SW620 (r = −0.855) cell lines. Finally, the PCA clearly corroborated that neutral extracts are a more homogenous group exhibiting higher antioxidant and cytotoxic results regardless of the part or cultivar; therefore, our findings suggest that PLE extracts under neutral conditions would be of interest for further studies on their potential health benefits.  相似文献   

18.
Here, we identified the mechanisms of action of antidiabetic activity of novel compounds isolated from Cassia fistula stem bark in STZ-diabetic animals. Novel triterpenoid compounds (C1, C2 and C3) were treated to STZ-administered diabetic animals at a concentration of 20mg/kg body weight orally for 60 days to assess their effects on plasma glucose, plasma insulin/C-peptide, serum lipid markers and the enzymes of carbohydrate metabolism, glucose oxidation and insulin signaling molecules. Oral administration of novel triterpenoid compounds to STZ-diabetic animals significantly decreased (p < 0.05) the plasma glucose concentration on the 7th, 15th, 30th, 45th and 60th daysin a duration-dependent manner (p < 0.05). Plasma insulin (p < 0.0001)/C-peptide (p < 0.0006), tissue glycogen (p < 0.0034), glycogen phosphorylase (p < 0.005), glucose 6-phosphatase (p < 0.0001) and lipid markers were significantly increased (p < 0.0001) in diabetic rats, whereas glucokinase (p < 0.0047), glycogen synthase (p < 0.003), glucose oxidation (p < 0.001), GLUT4 mRNA (p < 0.0463), GLUT4 protein (p < 0.0475) and the insulin-signaling molecules IR mRNA (p < 0.0195), IR protein (p < 0.0001), IRS-1 mRNA (p < 0.0478), p-IRS-1Tyr612 (p < 0.0185), Akt mRNA (p < 0.0394), p–AktSer473 (p < 0.0162), GLUT4 mRNA (p < 0.0463) and GLUT4 (p < 0.0475) were decreased in the gastrocnemius muscle. In silico analysis of C1–C3 with IRK and PPAR-γ protein coincided with in vivo findings. C1–C3 possessed promising antidiabetic activity by regulating insulin signaling mechanisms and carbohydrate metabolic enzymes.  相似文献   

19.
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.  相似文献   

20.
HPP at 600 MPa alone, and in combination with US at 20 kHz (200 W), was applied to minimally processed potatoes of two commonly grown cultivars in Ireland. Changes in colour and microbial load (Enterobacteriaceae, total aerobic count, Salmonella, yeasts, and moulds) were monitored in vacuum-packaged potatoes during 14 days of storage at 4 °C. HPP and HPP/US significantly (p < 0.05) affected the colour parameters a*, b*, L*, and ΔE of minimally processed potatoes compared to the controls. Microbial growth was delayed in most of the treated samples with respect to those untreated (controls), while HPP completely inactivated Enterobacteriaceae in both cultivars. Total phenolic content and antioxidant activities were not altered in the treated samples of both varieties when compared to the controls. The levels of chlorogenic acid, ferulic acid, and caffeic acid were decreased after both treatments, with a significant (p < 0.05) increase in quinic acid in the treated samples as opposed to those untreated. A significant (p < 0.05) decrease in the levels of glycoalkaloids, namely α-chaconine and α-solanine, in HPP- and HPP/US-treated potatoes was also observed. These findings suggest that HPP and US can extend the shelf-life of minimally processed potatoes with a negligible impact on their antioxidant activity and phenolic content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号