首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The theory of simple shells is a surface‐related Cosserat model for thin elastic shells. In this direct approach, each material point is connected with a triad of rigidly rotating directors. This paper presents a study of the governing equations for orthotropic elastic simple shells in the framework of the linearized theory. We establish the uniqueness of classical solutions, without any restrictive assumption on the strain energy function. The continuous dependence of solutions on the body loads and initial data is proved. Also, the existence of weak solutions to the equations of simple shells is proved by means of an inequality of Korn's type established for such directed surfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A finite element model is presented for analyzing the strength and stability of sandwich shells of arbitrary configuration with an adhesion failure zone between the core and one of the facings. The model is based on the assumptions that both facings are laminated Timoshenko-type composite shells, only transverse shear stresses in the core and normal stresses in the thickness direction have nonzero values, a free slip in the tangential plane in the adhesion failure zone and unilateral contact along the normal are possible, and the prebuckling state in the stability problem is linear. Biquadratic nine-node approximations for all functions and numerical integration were used. The displacements and rotation angles of the normals toward the facings as well as stresses in the core are taken as global degrees of freedom. The algebraic problem is solved using a special step-by-step procedure of determining the contact area in the scaling zone and employing unilateral constraints for some of the unknowns. Numerical examples are also given.Translated from Mekhanika Kompozitnykh Materialov, Vol. 29, No. 5, pp. 640–652, September–October, 1993.  相似文献   

3.
A variant of vibration theory for three-layered shells of revolution under axisymmetric loads is elaborated by applying independent kinematic and static hypotheses to each layer, with account of transverse normal and shear strains in the core. Based on the Reissner variational principle for dynamic processes, equations of nonlinear vibrations and natural boundary conditions are obtained. The numerical method proposed for solving initial boundary-value problems is based on the use of integrodifferential approach for constructing finite-difference schemes with respect to spatial and time coordinates. Numerical solutions are obtained for dynamic deformations of open three-layered spherical and ellipsoidal shells, over a wide range of geometric and physical parameters of the core, for different types of boundary conditions. A comparative analysis is given for the results of investigating the dynamic behavior of three-layered shells of revolution by the equations proposed and the shell equations of Timoshenko and Kirhhoff-Love type, with the use of unified hypotheses across the heterogeneous structure of shells.  相似文献   

4.
The magnetic induction field in the exterior of an ellipsoidallyinhomogeneous, four-conducting-layer model of the human headis obtained analytically up to its quadrupole approximation.The interior ellipsoidal core represents the homogeneous brainwhile each one of the shells represents the cerebrospinal fluid,the skull and the scalp, all characterized by different conductivities.The inhomogeneities of these four domains, together with theanisotropy imposed by the use of the ellipsoidal geometry, providethe most realistic physical and geometrical model of the brainfor which an analytic solution of the biomagnetic forward problemis possible. It is shown that in contrast to the spherical model,where shells of different conductivity are magnetically invisible,the magnetic induction field in ellipsoidal geometry is stronglydependent on the conductivity supports. The fact that sphericalshells of different conductivity are invisible has enhancedthe common belief that the biomagnetic forward solution doesnot depend on the conductivity profiles. As we demonstrate inthe present work, this is not true. Hence, the proposed multilayeredellipsoidal model provides a qualitative improvement of therealistic interpretation of magnetoencephalography (MEG) measurements.We show that the presence of the shells of different conductivitycan be incorporated in the form of the dipole vector for thehomogeneous model. Numerical investigations show that the effectsof shell inhomogeneities are almost as sound as the level ofMEG measurements themselves. The degenerate cases, where eitherthe differences of the conductivities within the shells disappear,or the ellipsoidal geometry is reduced to the spherical one,are also considered.  相似文献   

5.
We prove the local existence and uniqueness to a geometrically exact, observer‐invariant membrane‐plate model introduced by the author. The model consists of an elliptic partial differential system of equations describing the equilibrium response of the membrane which is non‐linearly coupled with a viscoelastic evolution equation for exact rotations, taking on the role of an orthonormal triad of directors. This coupling introduces a viscoelastic transverse shear resistance. Refined elliptic regularity results together with a new extended Korn's first inequality for plates and shells allow to proceed by a fixed point argument in appropriately chosen Sobolev‐spaces in order to prove existence and uniqueness. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A refined version of geometrically nonlinear relationships is proposed for the static thermoelastic response of sandwich shells with face sheets made of composite or homogeneous materials and a transversally stiff core. This theory has primary importance for studying mixed forms of buckling of the bearing sheets, which are mainly realized in the zones of a momentary stress-deformed state of the shell on the whole. An iteration procedure was developed for construction of the model. In the first step, assuming that the core is transversally soft, expressions are derived for the components of the displacement vector after integration of the three-dimensional equilibrium equations. In the second step, the tangential stresses are determined assuming a transversally stiff core to obtain the in-plane stresses and highly accurate transverse normal stresses. The proposed model admits a formal changeover to the model of a shell with a transversely soft core.Center for the Study of Dynamics and Stability. A. N. Tupolev Kazan State Technical University, Kazan, Tatarstan, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 4, pp. 513–524, July–August, 1996.  相似文献   

7.
Jörg Hohe  Liviu Librescu 《PAMM》2005,5(1):235-236
The present study provides an investigation of the effect of the transverse core compressibility on the dynamic buckling response of sandwich structures. The study utilizes a previous v. Kármán type higher-order model for shallow sandwich shells. An analytical solution is obtained by means of an extended Galerkin procedure in conjunction with an explicit fourth order Runge-Kutta algorithm to solve the transient problem. In an example analysis, it is observed that the transverse core compressibility can have strong effects even on the global response of sandwich structures. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The possibilities of using the technical theory for analyzing cylindrical sandwich shells with a core of low-modulus polymeric material are considered. It is shown to be necessary to make assumptions concerning the distribution of the deformations over the elements of the three-layer section and to take account of the shear strains in the core, the flexural rigidity in the longitudinal direction, and the Poisson ratio in determining the forces and moments. The theoretical conclusions have been experimentally confirmed by static tests on a model.All-Union Structural Engineering Correspondence Institute, Moscow. Translated from Mekhanika Polimerov, No. 2, pp. 298–304, March–April, 1973.  相似文献   

9.
The applicability and accuracy of stability equations of the refined theory for sandwich shells with a transversally stiff core proposed in [1] are investigated. The model problem of calculating the critical loads and stress fields in the core at mixed forms of the loss of stability is solved for an infinitely wide sandwich plate with an orthotropic core and composite load-carrying layers subjected to in-plane edge loads. The case of pure bending of the plate is considered in detail. The results obtained by variation of the physical-mechanical parameters are compared with the solutions of the three-dimensional theory for the core [2]. It is shown that the version of the refined theory [1] is more accurate than the other two-dimensional theories.For Pt. 2 see [1].Center for Study of Dynamics and Stability, Tupolev Kazan State Technical University, Kazan, Tatarstan, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 1, pp. 57–65, January–Feburary, 1998.  相似文献   

10.
本文在文献[1]的基础上,用严格的方法求解两端简支的夹层圆柱壳在均匀轴压下的轴对称失稳问题.内、外表层很薄弹性模量又大,按薄壳理论处理;夹心较厚弹性模量又相当小,横向剪切变形的影响必须考虑,在研究夹层壳的整体失稳尤其是局部失稳时,横向的拉伸和压缩变形也不可忽略,用数学弹性力学的方法处理.本文导得了可求解轴对称整体失稳和局部失稳临界载荷的超越方程,用数值计算的方法可算得临界载荷的最小值.对于整体失稳的情况,给出算例,与夹层壳理论的解作了比较.  相似文献   

11.
The present paper is devoted to the design of a hierarchy of two‐dimensional models for dynamical problems within the theory of multicomponent linearly elastic mixtures in the case of prismatic shells with thickness which may vanish on some part of its boundary. The hierarchical model is obtained by a semidiscretization of the three‐dimensional problem in the transverse direction. In suitable weighted Sobolev spaces we investigate the well‐posedness of the two‐dimensional problems, prove pointwise convergence of the sequence of approximate solutions restored from the solutions of the reduced problems to the exact solution of the original problem and estimate the rate of convergence. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
在经典的理论框架内,对分层的复合材料壳体——多孔材料夹芯的双壁面圆柱壳体,研究自由谐和波在其中的传播.借助于一个具有同样几何特性的展开平板,评估波通过多孔夹芯层传播时大部分有效的成分.通过有效波成分的考虑,将多孔层模拟为具有等效特性的流体.因此,模型简化为一个集满流体介质的双壁面圆柱壳体.最后,评估带宽频率中结构的传播损失,并对结果加以比较.  相似文献   

13.
The load-carrying capacity of thin cylindrical glass-reinforced plastic shells loaded by axial compression and external pressure has been investigated in relation to the characteristics of the two-way reinforcing system. The critical loads are expressed in terms of the characteristics of a parallel-reinforced layer with a coefficient that takes into account the reinforcing system and the shape of the cross section. The relations among the reinforcing layers optimal for the load-carrying capacity are determined and it is shown that independent two-way reinforcing substantially improves the load-carrying capacity of solid shells and shells with a nonload-bearing core.Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Mekhanika Polimerov, No. 6, pp. 1052–1058, November–December, 1969.  相似文献   

14.
We study the bending limit problem of shells in relation to the membrane locking, encountered in finite element computation of non‐inhibited very thin shells. Using a new approach of the theory of inextensional displacements (or infinitesimal bendings) we solve the bending limit problem in the case of a clamped hyperbolic paraboloid. We then use this solution to validate computations which can be used as bench‐marks for the membrane locking. Such configuration, non‐inhibited hyperbolic very thin shells, usually lacks numerical ‘validation’. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Based on the hypothesis of similarity of transverse displacements in thin-walled sandwich shells with a transversely soft core under dynamic and static loads, refined geometrically nonlinear dynamic equations of motion are constructed in the case of large variations in the parameters of the stress-strain state (SSS) in the tangential directions. For shells structurally symmetric across the thickness and loaded with initial static loads, linearized dynamic equations are derived, which, upon introducing the synphasic and antiphasic functions of displacements and forces, can be used to describe the synphasic and antiphasic buckling forms in the transverse and tangential directions. For nonshallow cylindrical and shallow spherical shells, the nonclassical problems on all possible vibration forms realized at zero indices of variability of the SSS parameters in the tangential directions are formulated and solved. For shallow shells of symmetric structure, the resolving equations are obtained by introducing, instead of tangential displacements and transverse tangential stresses in the core, the corresponding potential and vortex functions.  相似文献   

16.
应用轴对称旋转扁壳的非线性大挠度动力学方程,研究了波纹扁壳在均布载荷作用下的非线性受迫振动问题.采用格林函数方法,将扁壳的非线性偏微分方程组化为非线性积分微分方程组.再使用展开法求出格林函数,即将格林函数展开为特征函数的级数形式,积分微分方程就成为具有退化核的形式,从而容易得到关于时间的非线性常微分方程组.针对单模态振形,得到了谐和激励作用下的幅频响应.作为算例,研究了正弦波纹扁球壳的非线性受迫振动现象.该文的解答可供波纹壳的设计参考.  相似文献   

17.
The paper deals with the asymptotic formulation and justification of a mechanical model for a dynamic piezoelastic shallow shell in Cartesian coordinates. Starting from the three‐dimensional dynamic piezoelastic problem and by an asymptotic approach, the authors study the convergence of the displacement field and of the electric potential as the thickness of the shell goes to zero. In order to obtain a nontrivial limit problem by asymptotic analysis, we need different scalings on the mass density. The authors show that the transverse mechanical displacement field coupled with the in‐plane components solves an problem with new piezoelectric characteristics and also investigate the very popular case of cubic crystals and show that, for two‐dimensional shallow shells, the coupling piezoelectric effect disappears. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of the stiffness of the core, treated as a three-dimensional elastic body, on the buckling mode and the critical load is investigated for orthotropic cylindrical shells in axial compression. Parametric equations that permit the easy determination of the critical loads are obtained together with an expression for the stiffness parameter at which the buckling mode changes. The effect on the critical load of a central opening in the core is considered.Translated from Mekhanika Polimerov, No. 5, pp. 931–939, September–October, 1971.  相似文献   

19.
波纹壳的格林函数方法   总被引:6,自引:1,他引:5  
应用轴对称旋转扁壳的基本方程,研究了在任意载荷作用下具有型面锥度的浅波纹壳的非线性弯曲问题· 采用格林函数方法,将扁壳的非线性微分方程组化为非线性积分方程组· 再使用展开法求出格林函数,即将格林函数展成特征函数的级数形式,积分方程就成为具有退化核的形式,从而容易得到非线性代数方程组· 应用牛顿法求解非线性代数方程组时,为了保证迭代的收敛性,选取位移作为控制参数,逐步增加位移,求得相应的载荷· 在算例中,研究了具有球面度的浅波纹壳的弹性特征· 结果表明,由于型面锥度的引入,特征曲线发生显著变化,随着荷载的增加,将出现类似扁球壳的总体失稳现象· 本文的解答符合实验结果·  相似文献   

20.
A variant of the refined geometric nonlinear theory is suggested for nonshallow shells with a transversely soft core of medium thickness with regard to modifications of metric characteristics across the core thickness. The kinematic relations for the core are derived by sequential integration of the initial three-dimensional equations of elasticity theory along the transverse coordinate. The equations are preliminarily simplified by the assumption that the tangential stress components are equal to zero. With the example of sandwich plates, it is shown that these equations allow us to investigate synphasic, antiphasic, mixed flexural, and mixed flexural-shear buckling forms of load-bearing layers and the core depending on the precritical stress-strain state. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 1, pp. 95–108, January–February, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号