首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel type of biodegradable/biocompatible amphiphilic hyperbranched copolymer (H40‐PLA‐b‐MPEG) was synthesized. Its micellar properties were studied by DLS, fluorescence spectroscopy and TEM. The drug release profile showed that the H40‐PLA‐b‐MPEG micelles provide an initial burst release, followed by a sustained release of the entrapped hydrophobic model drug over a period of 4 to 58 h. The copolymer degraded hydrolytically within 6 weeks under physiological conditions. The MTT assay showed no obvious cytotoxicity against a human endothelial cell line at a concentration range of 0–400 µg · mL−1. These results indicate that the H40‐PLA‐b‐MPEG micelles have great potential as hydrophobic drug delivery carriers.

  相似文献   


2.
PLA-PEG良好的生物相容和降解性能在生物医学领域受到了广泛关注,对其性能和应用已经有了深入的研究。就PLA-PEG这一类两亲生物降解高分子的合成、性能作一简介,并对其在组织工程,药物控释以及靶向载体等方面的应用和前景作一综述和展望。  相似文献   

3.
To overcome drug delivery issues associated with its short half‐life in vivo, p‐coumaric acid (pCA), a naturally occurring bioactive, has been chemically incorporated into a poly(anhydride‐ester) backbone through solution polymerization. Nuclear magnetic resonance and Fourier transform infrared spectroscopies indicated that pCA was successfully incorporated without noticeable alterations in structural integrity. The polymer's weight‐average molecular weight and thermal properties were determined, exhibiting a molecular weight of over 26 000 Da and a glass transition temperature of 57 °C. In addition, in vitro hydrolytic release studies demonstrated pCA release over 30 d with maintained antioxidant activity, demonstrating the polymer's potential as a controlled release system.

  相似文献   


4.
Summary: Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using ceric ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA.  相似文献   

5.
A biodegradable amphiphilic block copolymer, PEG‐b‐P(LA‐co‐MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA‐co‐MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.

  相似文献   


6.
To enhance the limited degradability of poly(ethylene glycol) (PEG), a straightforward method of synthesizing poly[(ethylene glycol)‐co‐(glycolic acid)] (P(EG‐co‐GA)) via a ruthenium‐catalyzed, post‐polymerization oxyfunctionalization of various PEGs is developed. Using this method, a set of copolymers with GA compositions of up to 8 mol% are prepared with minimal reduction in molecular weight (<10%) when compared to their commercially available starting materials. The P(EG‐co‐GA) copolymers are shown to undergo hydrolysis under mild conditions.

  相似文献   


7.
8.
An amphiphilic graft copolymer poly(vinyl alcohol)-g-poly(butyl acrylate) (PVA-g-PBA) was synthesized by grafting butyl acrylate (BA) onto poly(vinyl alcohol) (PVA) with potassium persulfate (KPS) as free radical initiator in N2 atmosphere and aqueous medium. The formation of graft copolymer was confirmed by means of infrared spectroscopy (IR). The influences of initiator, monomer concentration and reaction time on the percentage of monomer conversion(C M), graft degree(Gd) and graft efficiency(Ge) have been discussed in detail. PVA-g-PBA was used as compatibilizer in blends of chlorinated polyethylene (CPE)/ poly(acrylic acid-co-acrylamide)[P(AA-AM)], and the compatibility between CPE and P(AA-AM) was also investigated.  相似文献   

9.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

10.
Summary: We report on various synthetic procedures for the preparation of biodegradable and biocompatible poly(lactide-co-aspartic acid) block copolymers based on natural monomeric units – lactic acid and aspartic acid. Multiblock poly(lactide-co-aspartic acid) copolymers of different comonomer composition were synthesized by heating a mixture of L-aspartic acid and L,L-lactide in melt without the addition of any catalyst or solvent and with further alkaline hydrolysis of the cyclic succinimide rings to aspartic acid units. Diblock poly(lactide-co-aspartic acid) copolymers with different block lengths were prepared by copolymerization of amino terminated poly(β-benzyl-L-aspartate) homopolymer and L,L-lactide with subsequent deprotection of the benzyl protected carboxyl group by hydrogenolysis. The differences in the structure, composition, molar mass characteristics, and water-solubility of the synthesized multiblock and diblock poly(lactide-co-aspartic acid) copolymers are discussed.  相似文献   

11.
A new class of biodegradable polyampholytes, poly[(aspartic acid)‐co‐lysine], were synthesized by thermal polycondensation of aspartic acid and lysine under reduced pressure and subsequent hydrolysis. Polymerization conditions were optimized to yield maximal water‐soluble poly(succinimide‐co‐lysine) with high molecular weight (160°C/3.5 h). The succinimide/lysine ratio in the polyampholytes could be adjusted by their feed ratio. Characterization of the poly(succinimide‐co‐lysine) by 1H NMR revealed that ω‐amine and carboxylic groups in lysine participated in the polymerization, leaving α‐amino groups as pendant cationic moieties.  相似文献   

12.
Synthesis and characterization of a pH‐ and redox‐sensitive hydrogel of poly(aspartic acid) are reported. Reversible gelation and dissolution are achieved both in dimethylformamide and in aqueous medium via a thiol‐disulphide interconversion in the side chain of the polymers. Structural changes are confirmed by Raman microscopy and rheological measurements. Injectable aqueous solutions of thiolated poly(aspartic acid) can be converted into mechanically stable gels by oxidation, which can be useful for drug encapsulation and targeted delivery. Reduction‐facilitated release of an entrapped drug from disulphide cross‐linked hydrogels is studied.

  相似文献   


13.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Cisplatin‐rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)‐terminated poly(aspartic acid) (Ad‐P(Asp)) and the β‐cyclodextrin (β‐CD)‐terminated poly(2‐methyl‐2‐oxazoline). In the formation of the nanoparticles, the β‐CD/admantane inclusion complex integrates poly(2‐methyl‐2‐oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin‐rich supramolecular nanoparticles have 53% cisplatin‐loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near‐infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin‐rich nanoparticles can target the tumor in vivo effectively.  相似文献   

15.
Summary: A novel cyclic carbonate monomer 5‐methyl‐5‐(succinimide‐N‐oxycarbonyl)‐1,3‐dioxan‐2‐one (MSTC) was prepared. The copolymers of MSTC with caprolactone (CL) were further synthesized by ring‐opening copolymerization. The copolymers with amido‐amine pendent groups were obtained by aminolysis of poly(MSTC‐co‐CL) with ethylenediamine. These copolymers were characterized by IR, 1H NMR, 13C NMR spectroscopies and GPC. The hydrophilicity and degradability of the copolymers with amido‐amine pendent groups were greatly improved in comparison with the PCL homopolymer.

Hydrophilicity of PCL (1), poly(MATC‐co‐CL) (16.5:83.5) (2), and poly(MATC‐co‐CL) (29.5:70.5) (3).  相似文献   


16.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Size tunable amphiphilic NPs composed of poly(γ‐PGA) and hydrophobic amino acids, such as Phe or Trp, were prepared. To prepare these size‐regulated NPs, γ‐PGA‐g‐Phe or γ‐PGA‐g‐Trp dissolved in DMSO was added to various concentrations of NaCl solution. The γ‐PGA‐Phe and γ‐PGA‐Trp formed monodispersed NPs, and the size of NPs can be easily controlled by NaCl concentration. The different‐sized NPs showed the same structure. The encapsulation of protein into the different‐sized NPs was successfully achieved and the size of protein‐encapsulated γ‐PGA‐Phe NPs was increased when protein was encapsulated.

  相似文献   


18.
In this article, novel smart hydrogels based on biodegradable pH sensitive poly(L ‐glutamic acid‐g‐2‐hydroxylethyl methacrylate) (PGH) chains and temperature‐sensitive hydroxypropylcellulose‐g‐acrylic acid (HPC‐g‐AA) segments were designed and synthesized. The influence of pH and temperature on the equilibrium swelling ratios of the hydrogels was discussed. The optical transmittance of the hydrogels was also changed as a function of temperature, which reflecting that the HPC‐g‐AA part of the hydrogels became hydrophobic at the temperature above the lower critical solution temperature (LCST). At the same time, the LCST of the hydrogels had a visible pH‐dependent behavior. Scanning electron microscopic analysis revealed the morphology of the hydrogels before and after enzymatic degradation. The biodegradation rate of the hydrogels was directly related to the PGH content and the pH value. The in vitro release of bovine serum albumin from the hydrogels were investigated. The release profiles indicated that both the HPC‐g‐AA and PGH contents played important roles in the drug release behaviors. These results show that the smart hydrogels seem to be of great promise in pH–temperature oral drug delivery systems. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of N‐isopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   

20.
A series of novel biodegradable random copolymers of 5‐benzyloxy‐1,3‐dioxan‐2‐one (5‐benzyloxy‐trimethylene carbonate, BTMC) and glycolide were synthesized by ring‐opening polymerization. The copolymers were characterized by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). The incorporation of BTMC units into the copolymer chains results in good solubility of the polymers in common solvents. The in vitro degradation rate can be tailored by adjusting the composition of the copolymers.

The in vitro degradation of the homopolymers and poly(BTMC‐co‐GA) copolymers.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号