首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Sciences》1999,1(5):311-320
Freeze dried complex carboxylates are highly reactive precursors for complex perovskite solid solutions in the system BaO-CuO-Y2O3-Nb2O5 On thermal decomposition of the amorphous precursors the formation of complex crystalline phases begins at 600 °C. In most cases the themodynamically controlled phase composition is reached after a reaction time of two hours at about 900 °C. Beginning from the perovskite compound Ba2YNbO6 a partial substitution of Y by Cu or by a combination 2/3 Cu,1/3 Nb leads to extended fields of solid solutions with cubic perovskite structure. Substitution according to Y0,5xBa2(Y1-0,5xCuxNb)O6+x is limited to x ≤ 0,4. A compound LBa2Cu2NbO8 (x=2), well characterized for L=La, does not exist for L=Y. The composition of solid solutions depends on the preparation conditions. There are some signs for an inhomogeneous distribution of B-cations in the cubic perovskites.  相似文献   

2.
Lanthanum silicated apatites with nominal composition La9.33+x(SiO4)6O2+3x/2 (−0.2 < x < 0.27) have been successfully synthesized by solid state reaction using a new reagent La2O2CO3 and amorphous SiO2 precursors. The formation mechanism of La2O2CO3 reagent, which cannot be purchased, has been followed by in-situ temperature depend XRD of La2O3 under CO2 atmosphere. The stability of this reagent during the synthesis step allowed to limit the formation of secondary phase La2Si2O7 and made the weighting of the reagent easier. High purity powders could be synthesized at the temperature of 1400 °C. Dense pellets (more than 98.5%) were obtained by isostatic pressing of powders calcined at 1200 °C and then sintered at 1550 °C. Traces of La2SiO5 secondary phase present in synthesized powder disappeared after densification and pure oxyapatite materials were obtained for all the compositions. Electrical measurements confirmed that conductivity behaviors of the sintered pellets were dependent to the oxygen over-stoichiometry. Indeed, a relatively high conductivity of 1 × 10−2 S cm−1 was exhibited at 800 °C for the nominal composition La9.60(SiO4)6O2.405 with low activation energy around 0.79 eV. The ionic conductivity properties were comparable with that of the earlier obtained materials.  相似文献   

3.
《Solid State Sciences》1999,1(5):245-255
In the ternary La2O3-TiO2-ZrO2 system the subsolidus phase relations at 1350 °C were determined using X-ray diffraction, scanning electron microscopy end energy dispersive X-ray analysis. The collected results are presented in the form of a phase diagram. In the equilibrium state there are 7 ternary and 5 binary compatible subsystems. In the system TiO2ss, ZrO2ss, ZrTiO4ss, La2Zr2O7ss and La2O3ss solid solutions were confirmed and La4Ti9O2ss and La2Ti2O7ss solid solutions were identified. The addition of ZrO2 does not stabilize the La2/3TiO3 perovskite compound, nor the addition of TiO2 a highly temperature stable compound La2/3ZrO3.  相似文献   

4.
In this research, the effects of doping Lu2O3 to α‐Bi2O3 in the range of 0.01 < x < 0.10 in a series of different mole fractions (1% < n < 10% mole ratios) was studied. Beside, heat treatment was performed by applying a cascade temperature rise in the range of 700‐800 °C for 72 hours and new phases were obtained in the (Bi2O3)1‐x(Lu2O3)x system. After heat treatment for 72 hours at 800 °C; mixtures, containing 2‐8% mole Lu2O3, formed a tetragonal phase. As a result of subjecting mixtures, containing 9% and 10% mole Lu2O3, to a quenching process at 825 °C, tetragonal phases were obtained. With the help of XRD, the crystal systems and lattice parameters of the solid solutions were obtained and their characterization was carried out. Thermal measurements were made by using a simultaneous DTA/TG system. The total conductivity (σT) in the β‐Bi2O3 doped with Lu2O3 was measured using the four‐probe DC method.  相似文献   

5.
Polymorphism of SrTa2O6 Orthorhombic SrTa2O6 is a new low temperature modification related to orthorhombic CaTa2O6. SrTa2O6(orh.) was obtained when the wellknown modification SrTa2O6(TTB) which is related to the tetragonal tungsten bronzes was heated in the presence of a transporting agent (chlorine) or a mineralizer (melt of B2O3) at temperatures below 1150°C. It could be prepared by the reaction of a 1:1 mixture of Sr(NO3)2 or SrCO3 with Ta2O5 in a sealed quartz glass tube as well. SrTa2O6(orh.) also occurred as an intermediate phase of the reaction of the corresponding 1:2 mixture at temperatures below 900°C (e. g. 840°C). Indexing of Guinier powder patterns led to the following unit cell: a = 11.006 Å, b = 7.638 Å, c = 5.622 Å. At temperatures above 1220°C SrTa2O6(orh.) changes (in air) to SrTa2O6(TTB). A reversal of this transition could not be achieved without the presence of a mineralizer or a transporting agent. CaxSr1?xTa2O6 solid solutions of the low temperature form could not definitely be established. However, at 1300°C solid TTB solutions of CaxSr1?xTa2O6 were formed. For x > 0.05 the TTB unit cells are orthorhombically distorted. For x ≥ 0.85 the x-ray powder patterns of the solid solutions looked like the one of CaTa2O6(orh.) and no TTB-structure was observed at 1300°C.  相似文献   

6.
The complexes M[La(C2O4)3]⋅xH2O (x=10 for M=Cr(III) and x=7 forM=Co(III)) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR, reflectance and powder X-ray diffraction (XRD) studies. Thermal investigations using TG, DTG and DTA techniques in air of chromium(III)tris(oxalato)lanthanum(III)decahydrate, Cr[La(C2O4)3]⋅10H2O showed the complex decomposition pattern in air. The compound released all the ten molecules of water within ∼170°C, followed by decomposition to a mixture of oxides and carbides of chromium and lanthanum, i.e. CrO2, Cr2O3, Cr3O4, Cr3C2, La2O3, La2C3, LaCO, LaCrOx (2<x<3) and C at ∼1000°C through the intermediate formation of several compounds of chromium and lanthanum at ∼374, ∼430 and ∼550°C. Thecobalt(III)tris(oxalato)lanthanum(III)heptahydrate, Co[La(C2O4)3]⋅7H2O becomes anhydrous around 225°C, followed by decomposition to Co3O4, La2(CO3)3 and C at ∼340°C and several other mixture species of cobalt and lanthanum at∼485°C. The end products were identified to be LaCoO3, Co3O4, La2O3, La2C3, Co3C, LaCO and C at ∼ 2>1000°C. DSC studies in nitrogen of both the compounds showed several distinct steps of decomposition along with ΔH and ΔSvalues. IR and powder XRD studies have identified some of the intermediate species. The tentative mechanisms for the decomposition in air are proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Solid state reactions at 925°C between the high-T c ceramic superconductor YBa2Cu3O7?δ and La2O3 and SrCO3, respectively, mixed in various molar ratiosr=MeOn/YBa2Cu3O7?δ, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa2Cu3O7?δ and La2O3 yielded (La1?xBax)2CuO4?δ, withx≈0.075?0.10. La2?xBa1+xCu2O6?δ, withx≈0.2?0.25 and La-doped (Y1?xLax)2BaCuO5, withx≈0.10?0.15. Forr=3.0, Y-doped La2BaCuO5 resulted also. The reaction between YBa2Cu3O7?δ and SrCO3 yielded (Sr1?zBaz)2CuO3, withz≈0.1, Y2(Ba1?zSrz)CuO5, withz=0.1?0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba0.5Sr0.5)5Cu3.5O10±δ. At values ofr≤2.0, unsubstituted YBa2Cu3O7?delta was found in the reaction products.  相似文献   

8.
Using LiI as the reducing agent, the compound O2-Li(2/3)+x(Ni1/3Mn2/3)O2, x∼1/3 (O2(Li+x)) has been prepared from the O2-Li2/3(Ni1/3Mn2/3)O2 (O2(Li)). Cyclic voltammetry and voltage-capacity profiles of the O2(Li+x) phase are qualitatively different from that of O2(Li) phase. The first extraction capacity of O2(Li+x) at C/10 rate is 190 mAh/g corresponding to the removal of 2/3 mole of Li from the compound. At C/5 rate it delivers a reversible capacity of 158 mAh/g at 25 °C and 184 mAh/g at 50 °C (vs Li metal; voltage window 2.5–4.6 V). In Li-ion cells, with MCMB anode and O2(Li+x) as cathode, a discharge capacity of 140 mAh/g was obtained at C/5 rate in the voltage window 2.5–4.5 V (25 °C). The charge–discharge cycling performance and the cyclic voltammograms reveal that O2(Li) and O2(Li+x) do not convert to the spinel structure.  相似文献   

9.

Substitutional, continuous solid solution of the general formula Y2–xYbxO3 was obtained from the mixture of Y2O3 and Yb2O3 oxides, for the first time by the mechanochemical method in a high-energy ball milling. The monophasic samples of nanocrystalline solid solution for x?>?0.00 and x?<?2.00 were examined by the methods: XRD, DTA, SEM, IR and UV–Vis–DR. As follows from the results, the solid solution crystallizes in cubic system and is isostructural with Y2O3 and Yb2O3. The solution is stable in the air atmosphere up to at least 900°C, and its decomposition temperature decreases with the increase in x, that is, with decreasing number of Yb3+ ions replacing Y3+ ions in the crystal lattice of Y2O3. The energy band gap estimated for the solid solution varies from?~?5.30 eV for x?=?0.50 to?~?4.90 eV for x?=?1.50, which means that it is an insulator.

  相似文献   

10.
Homogeneous La1 − x Ca x MnO3 solid solutions have been synthesized by the Pechini method (using polymer-solid compositions). Their microstructure, stability at high temperatures, and catalytic activity in methane oxidation are reported. A continuous series of solid solutions stable in air up to 1100°C forms in the system, and the particle surface is enriched with calcium. A distinctive microstructural feature of the particles is their microporosity. The catalytic activity of all calcium-containing samples (except for x = 0.7) below 700°C is lower than that of lanthanum manganite and decreases under the action of the reaction medium, which can be due to the decrease in the amount of weakly bound oxygen on the surface because of the enrichment of the surface with calcium and the formation of strongly bound surface carbonates. The higher activity and stability of the La0.3Ca0.7MnO3 sample (calcined at 1100°C) above 500°C can be due to the formation of nanosized areas with an Mn3O4 structures on the perovskite particle surface in the reaction medium.  相似文献   

11.
The early stages of crystallization for MgO-Al2O3-SiO2-TiO2-La2O3 glasses with different La2O3 concentrations were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The glass transition temperature (Tg) of the glass decreases at first and then increases again with increasing La2O3 concentration. This indicates that the structure of the glass becomes weaker at first and then stronger again. Lanthanum acts in glasses as network modifier and will usually decrease the network connectivity of the glass structure. Nevertheless, if the La2O3 concentration is high enough, the oxygen and other ions start to agglomerate around La, resulting in a more closely packed structure. Heat-treatment of the sample with x = 0.1 at 770–810 °C results in the precipitation of a droplet phase with higher mean atomic weight embedded in a matrix with lower mean atomic weight. The initial crystalline phase magnesium aluminum titanate (MAT) precipitates from the droplet phase. Nevertheless, for the sample with x = 0.4, dendrite-like structure could be observed after heat-treatment of the glass at 810 °C. Furthermore, the crystalline phase first precipitated is the lanthanum containing perrierite, which could be attributed to the rearrangement of the glass structure as an effect of La3+ incorporation.  相似文献   

12.
The oxidative coupling of methane (OCM) is an attractive route to convert natural gas directly into value-added chemical products (C2+). This work comparatively investigated SiO2- or La2O3-supported Na2WO4-MnxOy (denoted as NWM) catalysts in powder and fiber forms. The powder catalysts were prepared using a co-impregnation method and the fiber catalysts were prepared successfully using an electrospinning technique. The NWM/La2O3 fiber catalysts were activated at low temperature (500 °C) and had a 4.7% C2+ yield, with the maximum C2+ yield of 9.6% at 650 °C, while the NWM/SiO2 fiber catalyst was activated at 650 °C and had a maximum C2+ yield of 20.4% at 700 °C. The XPS results in the O 1s region indicated that NWM/La2O3 had a lower binding energy than NWM/SiO2, suggesting that the lattice oxygen species is easily released from the catalyst surface and creates vacancy sites that enhance performance. The stability test of the catalysts indicated that the La2O3-containing catalysts had excellent activity and high thermal stability, while the SiO2-containing catalysts had a higher C2+ yield when the prepared catalysts were compared at 700 °C. Considering the same component catalysts, the fiber catalysts achieved higher performance because their heat and mass transfer properties were enhanced.  相似文献   

13.
The ion-oxygen conductivity of apatite-like compounds based on lanthanum silicates and germanates La10A6O27 (A = Si, Ge), La10?x CaxSi6O27?δ (x = 0.25, 0.5, 1.0), La9.75Ca0.25Ge6O27?δ and La9.33+δSi6?x AlxO26(x=0.4, 0.8, 1.5) is studied in the interval of partial oxygen pressures pO2 extending from 10?16 to 105 Pa, at temperatures of 500–1000°C. The electroconductivity of undoped compounds La10A6O27 (A = Si, Ge) exceeds that of yttria-stabilized zirconia. The electroconductivity of lanthanum germanate (1.7 × 10?2 and 8.5 × 10?2S cm?1 at 700 and 900°C, respectively) is substantially higher than that of lanthanum silicate (9.8 × 10?3 and 3.5 × 10?2 S cm?1 at 700 and 900°C). Doping lanthanum germanate with calcium raises its electroconductivity (2.7 × 10?2 and 1.3 × 10?1 S cm?1 for La9.75Ca0.25Ge6O27?δ at 700 and 900°C). Conversely, doping lanthanum silicate with ions of calcium or aluminum reduces the conductivity. In the pO2 interval studied, the above compounds are ionic conductors and represent a class of solid electrolytes of promise for various electrochemical devices.  相似文献   

14.
Phase equilibria in the BaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. Quasi-binary sections have been determined, and an isothermal section of the system in the subsolidus region has been constructed. The BaO-Bi2O3-B2O3 ternary system has been divided into 22 triangles of coexisting phases. It has been found that four bismuth barium borates exist, namely, Ba3BiB3O9, BaBi2B4O10, BaBiB11O19, and BaBiBO4. Ba3BiB3O9 undergoes a phase transition at 850°C and exists up to 885°C, where it decomposes in the solid state. BaBiB11O19 and BaBi2B4O10 melt congruently at 807 and 730°C, respectively. BaBiBO4 melts incongruently at 780°C. X-ray powder diffraction data for the low-temperature polymorph of Ba3BiB3O9 are presented.  相似文献   

15.
The effect of ferric and manganese oxides dopants on thermal and physicochemical properties of Mn-oxide/Al2O3 and Fe2O3/Al2O3 systems has been studied separately. The pure and doped mixed solids were thermally treated at 400–1000°C. Pyrolysis of pure and doped mixed solids was investigated via thermal analysis (TG-DTG) techniques. The thermal products were characterized using XRD-analysis. The results revealed that pure ferric nitrate decomposes into Fe2O3 at 350°C and shows thermal stability up to1000°C. Crystalline Fe3O4 and Mn3O4phases were detected for some doped solids precalcined at 1000°C. Crystalline γ-Al2O3 phase was detected for all solids preheated up to 800°C. Ferric and manganese oxides enhanced the formation of α-Al2O3 phase at1000°C. Crystalline MnAl2O4 and MnFe2O4 phases were formed at 1000°C as a result of solid–solid interaction processes. The catalytic behavior of the thermal products was tested using the decomposition of H2O2 reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Spinel LiMn2O4 and Sm, La co-substituted LiSm x La0.2-x Mn1.80O4 (x?=?0.05, 0.10 and 0.15) cathode materials were synthesized by sol–gel method using aqueous solutions of metal nitrates and tartaric acid as chelating agent at 600 °C for 10 h. The structure and electrochemical properties of the synthesized materials were characterized by using thermogravimetric/differential thermal analysis, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy studies. XRD analysis indicated that all the prepared samples were mainly belong to cubic crystal form with Fd3m space group. LiSm0.10La0.10Mn1.80O4 exhibits capacity retention of 90 % and 82 % after 100 cycles at room temperature (30 °C) and at elevated temperature (50 °C) at a rate of 0.5-C, respectively, much higher than those of the pristine LiMn2O4 (74 % and 60 %). Among all the compositions, LiSm0.10La0.10Mn1.80O4 cathode has improved the structural stability, high-capacity retention, better elevated temperature performance and excellent electrochemical performances of the rechargeable lithium-ion batteries.  相似文献   

17.
In this study, after doping Lu2O3 to α‐Bi2O3 in the range of 11% ≤ n ≤ 20% in a series of different mole ratios, heat treatment was performed by applying a cascade temperature rise in the range of 700‐800 °C for 72 hours and new phases were obtained in the (Bi2o3)1‐x(Lu2o3)x system. After 72 hours of heat treatment at 800 °C, mixtures containing 14‐16% Lu2O3 formed a face‐centered cubic phase. Mixtures containing 11– 13%, 17%, 18% mole Lu2O3 were subjected to a quenching process at 825 °C and face‐centered cubic phases were obtained. With the help of XRD, the crystal systems and lattice parameters of the solid solutions were obtained and their characterization was carried out. Thermal measurements were made by using a simultaneous DTA/TG system. The total conductivity (σT) in the δ‐Bi2O3 doped with Lu2O3 system was measured using the four‐probe DC method. Keywords: Bismuth oxide; lutesium oxide; oxygen ionic conductivity; X‐ray techniques; thermal analysis.  相似文献   

18.
Oxygen-ion conduction in apatite-like compounds based on silicates and germanates of lanthanum La x A6O12 + 1.5x (A = Si, Ge; x = 9.11–10.22) is studied. The compounds are shown to be purely ionic conductors at 600–900°C and partial oxygen pressures 10?16 to 105 Pa. The electroconductivity of the best conducting specimens of La x A6O12 + 1.5x (A = Si, Ge; x = 9.77–10) exceeds that of electrolyte YSZ at moderate temperatures. The electroconductivity of lanthanum germanate is substantially greater than that of lanthanum silicate, specifically, 7.85 × 10?2 and 2.35 × 10?2 S cm?1, respectively, at 800°C. An inflection is discovered at ~750°C in the temperature dependences of electroconductivity of La x Ge6O12 + 1.5x (x = 9.77–10.22). A dilatometric examination points to a second-kind phase transition that may be due to the oxygen sublattice disordering. The behavior of apatite-like electrolytes La x A6O12 + 1.5x (A = Si, Ge) during long exploitation periods in the interval of working temperatures of electrochemical devices is studied for the first time ever. The electrolytes’ aging at 800°C in air for 1000 h was investigated by the electroconductivity method. The electroconductivity of lanthanum germanates decayed with time by 5% and that of lanthanum silicates, by 9.5%. The steady-state values of electroconductivity of all compounds studied is reached after 600–700 h. The compounds studied form a class of materials that hold some promise as solid electrolytes for medium-temperature fuel cells and other electrochemical devices.  相似文献   

19.
In order to elucidate the formation of precipitated iron catalysts for ammonia synthesis, the formation of solid solutions between α-Fe2O3 and Al2O3 was studied in the temperature range 500–950°C. The Al2O3 content in the solid solutions was found to be below 15 mole%. At temperatures of 800–950°C, solid solutions are formed at an appropriate rate. Specimens with relatively large specific surface areas are obtained at 800°C.  相似文献   

20.
A tetragonal (space group I4/mmm) solid solution La2-2x (Ca1-y Sry)1 + 2x Mn2O7 based on the Raddlesden-Popper phase (n = 2), which is formed by the simultaneous substitution of calcium in Ca3Mn2O7 by strontium and lanthanum, is synthesized by high-temperature annealing of La2O3, Mn2O3, CaCO3, and SrCO3 mixtures (1500°C, air). The concentration area of the solid solution in the scheme is a pentagon, whose corners correspond to the manganites Ca3Mn2O7, Ca0.75Sr2.25Mn2O7, La0.2Sr2.8Mn2O7, La1.6Sr1.4Mn2O7, and LaCa2Mn2O7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号