首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近红外光谱法直接检测甜叶菊叶片甜菊糖苷模型建立   总被引:1,自引:0,他引:1  
使用近红外光谱技术直接扫描甜叶菊干叶片,建立了甜菊苷(stevioside,ST)和莱鲍迪苷A(rebaudioside A,RA)的检测模型。对甜菊苷含量在0.27%~1.40%,莱鲍迪苷A含量在0.61%~3.98%范围内的不同品种的甜叶菊干叶片进行了近红外光谱扫描,共扫描了105份。采用偏最小二乘法建立甜菊糖苷的检测模型,比较了减去一条直线、多元散射校正、一阶导数和二阶导数等不同的光谱预处理方法对模型的影响。结果显示减去一条直线的数据预处理方法为ST的最优建模方法。ST校正集相关系数为0.986,校正均方根误差为0.341,预测均方根误差为1.00,相对分析误差为2.8;RA采用无光谱预处理建模,RA的建模结果相关系数为0.967,校正均方根误差为1.50,预测均方根误差为1.98,相对分析误差为4.17。说明近红外光谱技术检测甜叶菊干叶片中ST和RA的含量具有一定的可行性。同时与甜叶菊粉末ST模型结果相关系数为0.986,校正均方根误差为0.32,预测均方根误差为0.601,相对分析误差为2.86和RA模型结果相关系数为0.968,校正均方根误差为1.50,预测均方根误差为1.48,相对分析误差为4.2相比差异不明显。但减少了叶片粉末检测过程中的烘干、研磨的步骤,节省了时间,降低了工作量。  相似文献   

2.
植物中的重金属离子以一定形式与具有近红外吸收的有机分子基团结合, 因此可以借助近红外光谱技术间接检测其重金属离子含量。研究了基于近红外漫反射光谱技术快速检测丁香蓼叶片中重金属铜含量的方法。通过不同光谱数据预处理方法的对比,结合偏最小二乘法,建立了丁香蓼叶内重金属铜含量近红外光谱检测定量模型。实验结果为,经过平滑处理的光谱建模效果较理想,其建立的校正相关系数为0.950,校正均方根误差为5.99;外部验证相关系数为0.923,预测均方根误差为7.38。研究表明,近红外漫反射光谱技术用于丁香蓼叶片中重金属铜含量的快速检测具有可行性。  相似文献   

3.
实时监测发酵液中固形物含量的变化,对控制厌氧发酵过程的稳定性具有重要作用。研究中采用近红外高光谱技术结合化学计量学方法,对水葫芦和稻草秸秆混合厌氧发酵过程中的固形物含量进行定量检测研究。与传统2540G(APHA,1990)标准方法相比,近红外高光谱技术具有无损、快速的优点。实验过程中,首先获取发酵液样本的高光谱信息,应用移动平均平滑法(MAS)进行光谱预处理,并采用竞争自适应重加权采样算法(CARS)、连续投影算法(SPA)和Random frog算法提取光谱特征信息,然后基于全谱和所选特征波长下的光谱信息分别建立总固形物含量(TS)和挥发性固形物含量(VS)的校正模型,建模方法包括偏最小二乘回归(PLSR)和最小二乘-支持向量机(LS-SVM)。研究表明,SPA-LS-SVM模型的预测结果最好,其中TS的预测均方根误差(RMSEP)及相关系数(Rp)分别为0.005 8和0.841;而VS的RMSEP和Rp分别为0.004 1和0.874。结果表明,利用近红外高光谱结合化学计量学方法可以实现厌氧发酵液中的固形物含量的检测,为布置光谱传感器以便定量检测厌氧发酵过程中的固形物含量奠定了理论依据。  相似文献   

4.
采用可见/近红外光谱技术结合化学计量学方法对油茶籽油三元体系掺假进行定量检测研究。将菜籽油和花生油按不同比例掺入纯油茶籽油中,获得掺假样本。采集纯油茶籽油及掺假样本在350~1 800 nm范围内的可见/近红外光谱数据,随机分为校正集和预测集,并从不同建模波段、预处理方法及建模方法角度对掺假预测模型进行优化。研究结果表明,菜籽油、花生油和总掺伪量的最优建模波段及预处理方法分别为750~1 770,900~1 770 ,870~1 770 nm和多元散射校正(MSC)、标准归一化处理(SNV)和二阶微分,而最优的建模方法均为最小二乘支持向量机(LSSVM)。对于最优掺假模型,菜籽油、花生油和总掺伪量的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.963,0.982,0.993和2.1%,1.5%,1.8%。由此可见,可见/近红外光谱技术结合化学计量学方法可以用于油茶籽油的三元体系掺假定量检测。  相似文献   

5.
近红外光谱法对甲醇柴油中甲醇含量测定   总被引:1,自引:0,他引:1  
应用近红外光谱结合化学计量学方法实现了对甲醇柴油中的甲醇含量的定量分析。以实验室配制的32种不同浓度[浓度范围为2%~25.8%(φ)]的甲醇柴油溶液为研究对象,在4 500~7 000 cm-1光谱范围内,建立偏最小二乘(PLS)、支持向量机(SVM)和最小二乘支持向量机(LS-SVM)三种定量分析模型。在建立SVM模型时,经过比较分析,径向基函数(radial basis function,RBF)作为SVM模型的核函数时可以获得更高的预测精度。最终获得甲醇含量的PLS, SVM和LS-SVM三种模型的预测相关系数RP分别为0.985 9, 0.990 3, 0.998 9,预测均方根误差RMSEP分别为0.405 2, 0.356 3, 0.062 4,可以看出,三种预测模型都可以达到很好的效果,最优的预测模型是使用LS-SVM建模。研究结果表明,利用近红外光谱法结合化学计量学方法对甲醇柴油中甲醇含量的检测具有可行性,并可以达到很好的效果。采用近红外光谱技术结合化学计量方法对甲醇柴油中甲醇含量进行定量分析,也为近红外光谱技术快速无损检测甲醇柴油甲醇含量提供参考和应用价值。  相似文献   

6.
近红外光谱法定量测定小麦粉中的石灰类添加物的研究   总被引:1,自引:0,他引:1  
小麦粉的质量安全一直备受社会各界关注。在比较生石灰、熟石灰和碳酸钙的近红外光谱特征的基础上,采集了掺入不同含量的生石灰、熟石灰和碳酸钙的小麦粉样品的近红外漫反射光谱。采用偏最小二乘算法结合交互验证算法建立了石灰和碳酸钙的近红外定量校正模型,采用外部检验集对各模型进行外部验证。结果表明,石灰、碳酸钙的模型测定系数(R2)分别为99.80%和96.98%;校正集均方根误差分别为0.19和0.34;交互验证集均方根误差分别为0.26和0.75;预测集均方根误差分别为0.63和0.44;相对预测性能RPD分别为8.57和5.24。模型具有较高的精度,可以满足小麦粉中石灰含量的现场快速检测要求。F检验结果表明,模型的校正集、外部检验集的预测值-化学值之间具有极显著的相关关系。本研究可为小麦粉快速质量安全筛查提供参考方法,对小麦粉质量监控具有重要意义。  相似文献   

7.
药品近红外光谱通用性定量模型评价参数的选择   总被引:2,自引:0,他引:2  
为寻找药品近红外通用性定量模型在建立过程中用于确立最优模型的关键评价参数组合,收集整理了目前各种商品化化学计量学软件及文献中的13个常用于评价近红外定量模型的统计学参数,结合人用药品注册技术要求国际协调会对于药品定量分析方法验证基本要求,对92个药品近红外通用性定量分析模型的这些参数进行了计算和分析。通过对各个参数之间相互关系的研究,确定了适合于药品近红外通用性定量分析模型评价的参数组合,并统计出了这些参数的数值范围:用于模型准确性评价的关键参数为交叉验证均方根误差/预测均方根误差、平均相对偏差和相对分析误差;大部分交叉验证均方根误差/预测均方根误差结果在3%以内,其中交叉验证均方根误差在数值上与平均绝对偏差相当,大部分相对分析误差值大于2,而平均相对偏差的数值与所建模型的类型(剂型、样品的包装形式)和待测成分含量的分布有关。模型线性评价关键参数为决定系数;大部分模型的决定系数在80%~100%之间。模型耐用性关键评价参数为预测均方根误差与交叉验证均方根误差的比值,大部分模型该参数在1.5以内。精密度评价关键参数为重复测定结果的标准差;该参数对于规范近红外的操作,以及考核模型能否在不同仪器间传递具有重要的意义,但目前药品近红外通用性定量模型对于分析精密度的关注较少,无法估计出具体数值范围。该研究不仅为药品近红外通用性模型的建立者和使用者提供了评价模型优劣的依据,也为完善药品近红外光谱通用性定量分析模型的参数评价体系提供了基础数据。  相似文献   

8.
郝勇  吴文辉  商庆园  耿佩 《光学学报》2019,39(9):373-378
将近红外光谱分析技术结合化学计量学方法用于山茶油混合油品中油酸和亚油酸含量的快速检测。配制了76种山茶油混合油样本用于近红外光谱的采集,将不同的光谱预处理方法用于光谱有效信息的提取;将蒙特卡罗无信息变量消除(MCUVE)和变量组合集群分析(VCPA)方法用于建模变量的选择;将偏最小二乘回归(PLSR)用于脂肪酸含量定量分析模型的构建。结果表明:经NWD1~(st)-MSC预处理后,两种脂肪酸的近红外光谱的较正均得到最好的结果;采用基于VCPA的变量优选方法极大地改善了模型精度,实现了建模变量数量的有效压缩。对于油酸模型,建模变量数量由1501减少为7,交叉验证均方根误差和校正相关系数分别为1.107和0.984,预测均方根误差和测试集的预测相关系数分别为1.178和0.981;对于亚油酸模型,建模变量数量由1501减少为8,交叉验证均方根误差和校正相关系数分别为0.089和0.987,预测均方根误差和测试集的预测相关系数分别为0.105和0.982。近红外光谱分析技术结合NWD1~(st)-MSC-VCPA-PLSR的方法为山茶油混合油品中脂肪酸含量的测定提供了一种快速简单的分析方法。  相似文献   

9.
提出一种采用近红外光谱测定天然纤维素(棉、木)浆粕聚合度的方法。实验收集了195个天然纤维素浆粕样品,采用GB/T 9107-1999方法测定了其聚合度,对样品进行粉碎预处理后,放入旋转杯中采集相应的近红外漫反射光谱。通过化学计量学偏最小二乘方法(PLS)将聚合度数据与近红外光谱关联,分别建立了棉木浆粕混合样品、棉浆粕样品和木浆粕样品的聚合度定量模型。最优模型相关系数分别为0.980,0.993,和0.886,预测均方根误差(RMSEP)分别为147,143和53。研究了近红外方法精密度和准确性。结果表明棉浆粕和木浆粕分类模型预测准确性优于混合模型,且其预测精密度符合国标(GB)方法要求。另外,采用主成分分析方法建立了棉浆粕和木浆粕的识别模型,结果表明该模型可以有效识别棉浆粕和木浆粕。该方法操作简单、分析速度快,能够满足天然纤维素浆粕聚合度在线检测要求,为实现清洁制浆新工艺聚合度在线监控目标提供了理论和技术依据。  相似文献   

10.
为了实现甜菜依据含糖量定等分级,甜菜收购环节的按质论价,促进甜菜制糖行业的良好健康发展,应用近红外光谱技术对甜菜糖度的快速检测进行了系统研究,确定了一种快速、无损、准确的测量甜菜糖度的方法。采集具有代表性的28个甜菜品种,820个甜菜样品作为校正集,70个样品作为预测集,扫描得到甜菜校正集样品的近红外原始光谱,选择合适的光谱预处理方法,采用偏最小二乘法建立甜菜糖度的定量预测数学模型,以校正模型的内部交互验证均方根误差(RMSECV)、决定系数(R2)和外部预测标准误差(SEP)为指标对模型的性能进行评价,并对模型的预测效果进行了比较。采用一阶导数和标准正态变量变换对光谱进行预处理并结合偏最小二乘法所建立的定量预测数学模型的预测能力较好。甜菜糖度定量校正数学模型的模型决定系数为0.908 3,内部交互验证预测均方根误差为0.376 7。用此数学模型对预测集70个样品进行预测,预测值与实测值的相关系数达到0.921 4,预测标准误差为0.439,预测值和实测值之间不存在显著性差异(p>0.05)。结果表明:近红外光谱法作为一种简单、快速、无损、环保的检测方法,能够良好的评价甜菜的糖度。建立的模型具有很高的精确性,可以满足甜菜糖含量测定的需要,该方法可以实现甜菜收购环节的定等分级和按质论价。  相似文献   

11.
为了快速有效评定花椒质量等级,应用近红外光谱分析技术,采用偏最小二乘法,对141份花椒样品粉碎成八种不同颗粒大小的粉末,对近红外光谱分别建立挥发油含量预测模型,当粉末样品颗粒大小为40目时,建立的模型最优,交叉验证测定系数r2141为0.9364,交叉验证误差均方根RMSECV141为0.421。使用105份40目粉末样品近红外光谱所建立的模型对36份样品的预测集进行预测,光谱预处理采用Meancentering vector normalization,谱区在6100.1~5774.2cm-1及4601.6~4424.2cm-1,则预测测定系数r326为0.9862,预测集验证误差均方根RMSEP36为0.192,预测相对标准差RSD36为4.95%,预测相对分析误差RPD36为8.517。研究结果表明,对花椒进行近红外光谱扫描前,粉碎到40目时所建立的近红外光谱模型最佳,使用近红外光谱技术快速有效检测花椒挥发油含量是可行的。  相似文献   

12.
基于遗传算法的安溪铁观音品质快速评价研究   总被引:2,自引:0,他引:2  
为探究一种快速无损的安溪铁观音品质评价方法,利用遗传算法(GA)对茶样的近红外光谱特征波长进行筛选,结合偏最小二乘(PLS),建立全谱段的PLS定量模型与GA-PLS模型。结果表明,傅里叶变换近红外(FT-NIR)全谱段光谱在经过平滑+二阶导数+归一化处理后,PLS模型预测性能最高,建模结果为:校正集相关系数RC=0.921,校正集均方根误差RMSEC=0.543,验证集相关系数RP=0.913,验证集均方根误差RMSEP=0.665。选用近红外光谱6 670~4 000 cm-1谱区,采用遗传算法进行特征波长筛选,参与建模数据点数从1 557缩减到408个。优选波段后,GA-PLS建模结果为:校正集相关系数RC=0.959,校正集均方根误差RMSEC=0.413,验证集相关系数RP=0.940,验证集均方根误差RMSEP=0.587。可见,GA-PLS模型的校正集和验证集的预测结果均优于全谱段PLS模型。结果说明,在传统的近红外光谱技术结合化学计量学方法的建模基础上,加入遗传算法进行波长筛选,能有效提高模型预测能力,实现方法学的创新研究,且GA-PLS品质评价模型具有较强的参考和推广价值,为提高我国茶叶品质的检测技术水平提供新的方法借鉴。  相似文献   

13.
为了探索一种简捷、快速、高效的西红柿品质检测方法,应用近红外光谱技术与光纤传感技术相结合的新方法,快速测量西红柿果浆样品中营养成分的含量。实验所用的主要仪器为近红外光纤光谱仪,波长范围为900~2 500 nm。以164个西红柿样品为标准样品,进行了光谱采集及相应的化学值测定。实验数据采用偏最小二乘法(PLS)进行回归,建立西红柿果浆中总酸及可溶性糖含量的数学模型,并对回归方法进行统计分析。结果为:西红柿果浆中总酸验证集的决定系数(R2)为0.967,均方根误差(RMSEC)为0.133,预测均方根误差(RMSEP)为0.103;总糖验证集的决定系数(R2)为0.976,均方根误差(RMSEC)为0.463,预测均方根误差(RMSEP)为0.460。均达到了较好的预测结果,表明该方法对定量分析西红柿果浆中多组分含量是可行的。基于该方法快速、简便及可对同一样品多组分含量同时分析的优点,它是一种极具发展前途的传感器,正在逐渐成为国际传感器领域的研究热点。  相似文献   

14.
近红外透射光谱应用于黄酒酒龄的定性分析   总被引:9,自引:5,他引:4  
应用近红外光谱透射技术,结合化学计量学方法,开展了黄酒酒龄定性鉴别的研究,并对不同光谱预处理方法(未处理、平滑、二阶微分)对酒龄鉴别结果的影响进行了对比分析。试验采用傅里叶变换近红外光谱仪,以86瓶绍兴黄酒为标准样品,并结合不同光谱预处理方法及判别分析法,建立了黄酒酒龄定性鉴别模型。光谱平滑处理对酒龄鉴别结果影响不显著,而微分光谱分析结果最差,近红外原始光谱结合判别分析法的分析结果最优,其校正集正确分类的百分比达98.1%,预测集达90.6%。研究表明,近红外光谱透射技术结合原始光谱及判别分析法可作为一种可靠、准确、快速的检测方法用于黄酒酒龄定性鉴别分析。  相似文献   

15.
紫米是生活中常见的食材,具有丰富的营养价值。由于紫米价格较高导致染色紫米大量流入市场。本文使用太赫兹时域光谱技术结合化学计量学方法探索紫米掺假的快速检测方法。采用太赫兹时域光谱技术(THz-TDS)采集0~7 THz范围内紫米掺假的光谱数据,并选择0.5~2.5 THz波段的吸收系数谱和折射率谱进行分析并采用化学计量学方法对光谱数据进行建模分析。分别采用Savitzky-Golay卷积平滑(SG Smoothing,SG平滑)、基线校正(Baseline)、归一化(Normalization)、多元散射校正(MSC)等方法进行光谱预处理,结合偏最小二乘判别分析(PLS-DA)对紫米、紫米掺染色大米和紫米掺染色黑米进行定性分析。定性分析结果显示,通过主成分分析(PCA)的三种样品平面分布存在明显差异;经过基线校正的光谱数据建立的PLS-DA模型效果最佳,误判率为0。接着使用偏最小二乘法(PLS)结合SG平滑、 Baseline、 Normalization、 MSC等预处理方法分别对紫米中掺染色大米和紫米中掺染色黑米的光谱数据建立PLS定量模型。结果显示,采用基线校正预处理方法的PLS建模效果最佳,紫米掺染色大米的预测集相关系数为0.936,预测集均方根误差(RMSEP)为0.095。紫米掺染色黑米的预测集相关系数为0.914,预测集均方根误差为0.096。为对比分析线性(PLS)与非线性(LS-SVM)两种定量模型方法的预测精度,采用相同预处理方法后的紫米掺假含量光谱数据建立最小二乘支持向量机(LS-SVM)预测模型,选用径向基函数(RBF)作为核函数。结果表明采用基线校正处理后LS-SVM模型效果最佳,紫米中掺染色大米的预测集均方根误差(RMSEP)为0.092,预测集相关系数(R_p)为0.979;紫米中掺染色黑米的预测集均方根误差(RMSEP)为0.093,预测集相关系数(R_p)为0.948。对比发现对紫米掺假的含量建立LS-SVM预测模型较PLS模型的稳定性更好、精确度更高。研究表明,太赫兹时域光谱结合化学计量学方法可为紫米掺假的定性定量分析提供快速精确的分析方法。  相似文献   

16.
采用傅里叶变换近红外光谱仪结合积分球附件对20个液体咖啡样品以漫反射方式采集近红外光谱,分别针对速溶咖啡、植脂末、糖建立定量校正模型。结果表明,速溶咖啡、植脂末、糖的模型因子数分别为4,5和4;测定系数(R2)分别为98.97%,99.94%和99.18%;校正均方根误差(root mean square error ofcalibration,RMSEC)分别为1.62,0.42和1.58;交互验证均方根误差(root mean square error of cross vali-dation,RMSECV)分别为2.12,0.72和2.01;F检验结果表明,三个模型的预测值-化学值之间存在极显著的相关关系。研究表明,近红外光谱法可以快速、准确地对液体咖啡中的三种主要成分同时进行定量测定,可为液体咖啡质量控制以及液体配方食品中具有一定组成的混合物的定量测定提供一定的参考。  相似文献   

17.
黄龙病是柑桔果树的毁灭性病害,对柑桔产业危害巨大。基于模型平均理论,探讨联用可见与近红外光谱技术,提高柑桔黄龙病快速无损检测精度的可行性。采集记录柑桔叶片的可见与近红外光谱,经实时荧光定量PCR鉴别黄龙病叶片为轻度、中度和重度三类,缺素和正常样品也经PCR鉴定,共五类叶片。基于光谱直接拼接、光谱归一化拼接和模型平均三种不同策略,结合偏最小二乘判别分析(PLS-DA)和多元线性回归(MLR)方法,分别建立了柑桔黄龙病可见与近红外光谱联用无损检测模型。经比较发现,光谱联用模型的检测精度均高于可见或近红外单一检测模型,且经导数处理后的光谱直接拼接PLS-DA模型检测精度最高,模型预测相关系数为0.97,预测均方根误差为0.67,模型总误判率为3%,其原因是导数消除了光谱的基线漂移。光谱归一化拼接的PLS-DA模型检测精度次之,模型总误判率为7%。可见与近红外模型平均的检测精度最低,模型总误判率为7.2%。实验结果表明,联用可见与近红外光谱,结合光谱拼接方法,提高了柑桔黄龙病无损检测模型的检测精度,研究可为其他领域的光谱联用提供参考依据。  相似文献   

18.
稻谷新陈度近红外快速无损检测的研究   总被引:3,自引:0,他引:3  
利用近红外技术结合化学计量学的方法建立了稻谷新陈度近红外光谱定量模型。对90个稻谷样本,通过近红外光谱仪扫描获得了从950~1 650 nm的光谱信息。运用UNSCRAMBLER9.7软件进行计算,选择全谱区,结合偏最小二乘法(PLS)算法,得到光谱最佳预处理方法为一阶导加Savizky-Golay平滑,最佳主成分数为7。进行内部交叉验证,决定系数r2为0.967 9,预测误差为54.51,且预测结果与真实值通过t检验,说明模型是可行的。为稻谷新陈度的快速无损检测提供了一种新的方法。  相似文献   

19.
红外光谱的陆生动物油脂中反刍动物成分鉴别分析   总被引:1,自引:0,他引:1  
为有效应对违法掺加导致的饲料安全隐患,完善饲用油脂的高效检测手段,满足饲料质量安全的监管需求,以来源可靠的不同种属动物油脂为研究对象,通过在非反刍动物油脂中掺加不同比例(1%,5%,10%,20%,30%和40% W/W)的反刍动物油脂获得试验样品,首次系统应用傅里叶变换红外光谱结合化学计量学方法探讨了陆生动物油脂中掺加反刍成分的鉴别分析方法与模型。研究表明基于掺加比例1%~40%样品集,偏最小二乘判别分析模型正确判别率为100%,无假阳性和假阴性样品;进一步研究发现,基于陆生动物油脂中反刍成分低掺加比例0.1%~40%,0.2%~40%,0.4%~40%,0.6%~40%和0.8%~40%样品集,偏最小二乘判别分析模型的正确判别率均低于100%。且随着最低掺加比例的降低,假阳性与假阴性样品数明显增多,其正确判别率逐步降低。因此,陆生动物油脂中掺加反刍成分判别分析检量限约为1%;进一步通过脂肪酸组成与差异性分析、红外光谱特征波段和特征化学键对比分析探讨其判别分析机理。非反刍动物油脂光谱3 006 cm-1处吸收峰(代表=C-H(cis-)的拉伸振动)和914 cm-1处吸收峰(代表=HC=CH-(cis-)的弯曲振动)明显高于反刍动物油脂样品,主要表征了顺式脂肪酸和不饱和脂肪酸的显著差异。非反刍动物油脂光谱965 cm-1处吸收峰(代表-HC=CH-(trans-)的弯曲振动)明显低于反刍动物油脂样品,主要表征了反式脂肪酸和饱和脂肪酸的显著差异。掺加比例为1%的混合样品中反式C=C键含量显著高于其他低掺加比例的样品,而不同掺加比例样品的顺式C=C键含量和C-H(-CH2-)键含量均无显著性差异。因此,基于红外光谱的陆生动物油脂中反刍动物成分鉴别分析主要是基于反式C=C键结构的信息表征。综上所述,红外光谱可作为一种兼顾检测效率与检测精度的技术应用于陆生动物油脂中反刍成分的鉴别分析。  相似文献   

20.
采用近红外光谱和电子鼻对葡萄酒的酒精发酵过程进行了动态采样检测,通过主成分回归和偏最小二乘回归对酒精度变化进行了监控和预测研究。分别建立了近红外光谱、电子鼻以及二者融合数据对酒精度定量分析的主成分回归和偏最小二乘回归模型。结果表明,近红外光谱数据和电子鼻数据的主成分回归和偏最小二乘回归模型的相关系数(r)均大于0.99,但校正均方根误差(RMSEC)和预测均方根误差(RMSEP)较大。近红外光谱和电子鼻数据融合后,模型质量得到提高,建立的偏最小二乘模型r为0.999 2,RMSEC和RMSEP分别降低为0.206%和0.205%(v/v),定量精度较高。近红外光谱和电子鼻均适用于红酒发酵过程中对酒精度的定量分析,且二者结合应用能提高定量精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号