首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods.  相似文献   

2.
The numerical solutions of stochastic partial differential equations of Itô type with time white noise process, using stable stochastic explicit finite difference methods are considered in the paper. Basically, Stochastic Alternating Direction Explicit (SADE) finite difference schemes for solving stochastic time dependent advection-diffusion and diffusion equations are represented and the main properties of these stochastic numerical methods, e.g. stability, consistency and convergence are analyzed. In particular, it is proved that when stable alternating direction explicit schemes for solving linear parabolic PDEs are developed to the stochastic case, they retain their unconditional stability properties applying to stochastic advection-diffusion and diffusion SPDEs. Numerically, unconditional stable SADE techniques are significant for approximating the solutions of the proposed SPDEs because they do not impose any restrictions for refining the computational domains. The performance of the proposed methods is tested for stochastic diffusion and advection-diffusion problems, and the accuracy and efficiency of the numerical methods are demonstrated.  相似文献   

3.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

4.
Variational integrators are derived for structure-preserving simulation of stochastic Hamiltonian systems with a certain type of multiplicative noise arising in geometric mechanics. The derivation is based on a stochastic discrete Hamiltonian which approximates a type-II stochastic generating function for the stochastic flow of the Hamiltonian system. The generating function is obtained by introducing an appropriate stochastic action functional and its corresponding variational principle. Our approach permits to recast in a unified framework a number of integrators previously studied in the literature, and presents a general methodology to derive new structure-preserving numerical schemes. The resulting integrators are symplectic; they preserve integrals of motion related to Lie group symmetries; and they include stochastic symplectic Runge–Kutta methods as a special case. Several new low-stage stochastic symplectic methods of mean-square order 1.0 derived using this approach are presented and tested numerically to demonstrate their superior long-time numerical stability and energy behavior compared to nonsymplectic methods.  相似文献   

5.
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.  相似文献   

6.
This paper discusses two stochastic approaches to computing the propagation of uncertainty in numerical simulations: polynomial chaos and stochastic collocation. Chebyshev polynomials are used in both cases for the conventional, deterministic portion of the discretization in physical space. For the stochastic parameters, polynomial chaos utilizes a Galerkin approximation based upon expansions in Hermite polynomials, whereas stochastic collocation rests upon a novel transformation between the stochastic space and an artificial space. In our present implementation of stochastic collocation, Legendre interpolating polynomials are employed. These methods are discussed in the specific context of a quasi-one-dimensional nozzle flow with uncertainty in inlet conditions and nozzle shape. It is shown that both stochastic approaches efficiently handle uncertainty propagation. Furthermore, these approaches enable computation of statistical moments of arbitrary order in a much more effective way than other usual techniques such as the Monte Carlo simulation or perturbation methods. The numerical results indicate that the stochastic collocation method is substantially more efficient than the full Galerkin, polynomial chaos method. Moreover, the stochastic collocation method extends readily to highly nonlinear equations. An important application is to the stochastic Riemann problem, which is of particular interest for spectral discontinuous Galerkin methods.  相似文献   

7.
This paper discusses two stochastic approaches to computing the propagation of uncertainty in numerical simulations: polynomial chaos and stochastic collocation. Chebyshev polynomials are used in both cases for the conventional, deterministic portion of the discretization in physical space. For the stochastic parameters, polynomial chaos utilizes a Galerkin approximation based upon expansions in Hermite polynomials, whereas stochastic collocation rests upon a novel transformation between the stochastic space and an artificial space. In our present implementation of stochastic collocation, Legendre interpolating polynomials are employed. These methods are discussed in the specific context of a quasi-one-dimensional nozzle flow with uncertainty in inlet conditions and nozzle shape. It is shown that both stochastic approaches efficiently handle uncertainty propagation. Furthermore, these approaches enable computation of statistical moments of arbitrary order in a much more effective way than other usual techniques such as the Monte Carlo simulation or perturbation methods. The numerical results indicate that the stochastic collocation method is substantially more efficient than the full Galerkin, polynomial chaos method. Moreover, the stochastic collocation method extends readily to highly nonlinear equations. An important application is to the stochastic Riemann problem, which is of particular interest for spectral discontinuous Galerkin methods.  相似文献   

8.
The class of stochastic Runge–Kutta methods for stochastic differential equations due to Rößler is considered. Coefficient families of diagonally drift-implicit stochastic Runge–Kutta (DDISRK) methods of weak order one and two are calculated. Their asymptotic stability as well as mean-square stability (MS-stability) properties are studied for a linear stochastic test equation with multiplicative noise. The stability functions for the DDISRK methods are determined and their domains of stability are compared to the corresponding domain of stability of the considered test equation. Stability regions are presented for various coefficients of the families of DDISRK methods in order to determine step size restrictions such that the numerical approximation reproduces the characteristics of the solution process.  相似文献   

9.
Abstract

A general class of stochastic Runge-Kutta methods for the weak approximation of Itô and Stratonovich stochastic differential equations with a multi-dimensional Wiener process is introduced. Colored rooted trees are used to derive an expansion of the solution process and of the approximation process calculated with the stochastic Runge-Kutta method. A theorem on general order conditions for the coefficients and the random variables of the stochastic Runge-Kutta method is proved by rooted tree analysis. This theorem can be applied for the derivation of stochastic Runge-Kutta methods converging with an arbitrarily high order.  相似文献   

10.
It is well known that the numerical solution of stiff stochastic ordinary differential equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those arising from stochastic partial differential equations, explicit methods with extended stability regions can be very effective. In the present paper our aim is to derive explicit Runge–Kutta schemes for non-commutative Stratonovich stochastic differential equations, which are of weak order two and which have large stability regions. This will be achieved by the use of a technique in Chebyshev methods for ordinary differential equations.  相似文献   

11.
In this paper, a new approach to solving a prediction problem for nonlinear stochastic differential systems with a Poisson component is discussed. In this approach, the prediction problem is reduced to an analysis of stochastic jump-diffusion systems with terminating and branching paths. The prediction problem can be approximately solved by using numerical methods for stochastic differential equations and methods for modeling inhomogeneous Poisson flows.  相似文献   

12.
Stochastic programming problems have very large dimension and characteristic structures which are tractable by decomposition. We review basic ideas of cutting plane methods, augmented Lagrangian and splitting methods, and stochastic decomposition methods for convex polyhedral multi-stage stochastic programming problems.  相似文献   

13.
In this paper we carry on our study [4] of the algebraic representations of general stochastic processes. We give methods for constructing the algebraic representation of a stochastic process from the distribution of the process at a fixed finite number of times, we develope some techniques of integration, and we introduce the notion of a fibre bundle representation of a stochastic process. We then use this fibre bundle representation to study existence, methods of computation and the geometry of Markov process representations of the general stochastic process; thus extending [4] where existence was only discussed for discrete time or simple stochastic processes.  相似文献   

14.
This study presents the results of an extensive Monte Carlo experiment to compare different methods of efficiency analysis. In addition to traditional parametric–stochastic and nonparametric–deterministic methods recently developed robust nonparametric–stochastic methods are considered. The experimental design comprises a wide variety of situations with different returns-to-scale regimes, substitution elasticities and outlying observations. As the results show, the new robust nonparametric–stochastic methods should not be used without cross-checking by other methods like stochastic frontier analysis or data envelopment analysis. These latter methods appear quite robust in the experiments.  相似文献   

15.
One of the main methods for solving stochastic programs is approximation by discretizing the probability distribution. However, discretization may lose differentiability of expectational functionals. The complexity of discrete approximation schemes also increases exponentially as the dimension of the random vector increases. On the other hand, stochastic methods can solve stochastic programs with larger dimensions but their convergence is in the sense of probability one. In this paper, we study the differentiability property of stochastic two-stage programs and discuss continuous approximation methods for stochastic programs. We present several ways to calculate and estimate this derivative. We then design several continuous approximation schemes and study their convergence behavior and implementation. The methods include several types of truncation approximation, lower dimensional approximation and limited basis approximation.His work is supported by Office of Naval Research Grant N0014-86-K-0628 and the National Science Foundation under Grant ECS-8815101 and DDM-9215921.His work is supported by the Australian Research Council.  相似文献   

16.
Wang  Zhenyu  Ma  Qiang  Yao  Zhen  Ding  Xiaohua 《Journal of Nonlinear Science》2020,30(1):419-447
Journal of Nonlinear Science - In this paper, all the terms in the stochastic Magnus expansion are presented by rooted trees. First, stochastic Magnus methods for linear stochastic differential...  相似文献   

17.
We deal with linear multi-step methods for SDEs and study when the numerical approximation shares asymptotic properties in the mean-square sense of the exact solution. As in deterministic numerical analysis we use a linear time-invariant test equation and perform a linear stability analysis. Standard approaches used either to analyse deterministic multi-step methods or stochastic one-step methods do not carry over to stochastic multi-step schemes. In order to obtain sufficient conditions for asymptotic mean-square stability of stochastic linear two-step-Maruyama methods we construct and apply Lyapunov-type functionals. In particular we study the asymptotic mean-square stability of stochastic counterparts of two-step Adams–Bashforth- and Adams–Moulton-methods, the Milne–Simpson method and the BDF method. AMS subject classification (2000) 60H35, 65C30, 65L06, 65L20  相似文献   

18.
This paper deals with the mean-square exponential stability of stochastic theta methods for nonlinear stochastic delay integro-differential equations. It is shown that the stochastic theta methods inherit the mean-square exponential stability property of the underlying system. Moreover, the backward Euler method is mean-square exponentially stable with less restrictions on the step size. In addition, numerical experiments are presented to confirm the theoretical results.  相似文献   

19.
《随机分析与应用》2013,31(5):1295-1314
Abstract

In the present investigation, numerical methods are developed for approximate solution of stochastic boundary-value problems. In particular, shooting methods are examined for numerically solving systems of Stratonovich boundary-value problems. It is proved that these methods accurately approximate the solutions of stochastic boundary-value problems. An error analysis of these methods is performed. Computational simulations are given.  相似文献   

20.
Abstract

In the present investigation, shooting methods are described for numerically solving nonlinear stochastic boundary-value problems. These stochastic shooting methods are analogous to standard shooting methods for numerical solution of ordinary deterministic boundary-value problems. It is shown that the shooting methods provide accurate approximations. An error analysis is performed and computational simulations are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号