首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of bulk free‐radical polymerizations of n‐butyl methacrylate (n‐BMA), iso‐butyl methacrylate (i‐BMA), and tert‐butyl methacrylate (t‐BMA) are studied by differential scanning calorimetry and with the aid of a mathematical model previously reported by the authors. In all the cases, the rate of polymerization (Rp) evolution curve exhibits a minimum at low conversions and the characteristic maximum of the autoacceleration effect. It is found that the monomer conversion xmin at which the minimum is observed, follows the order n‐BMA > i‐BMA > t‐BMA and that for monomer conversions (x) smaller than xmin, the termination rate coefficient (kt) shows a plateau. According to the model results it is obtained that for x > xmin, the termination reaction is chemically controlled whereas for x > xmin, it is diffusion‐controlled and that the xmin values are related to the value of the termination rate coefficient of the chemical step (kt0) of every isomer, which is highly influenced by the steric hindrance of the alkyl substituent group.  相似文献   

2.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

3.
4.
The polymerizations of α‐ethyl β‐N‐(α′‐methylbenzyl)itaconamates carrying (RS)‐ and (S)‐α‐methylbenzylaminocarbonyl groups (RS‐EMBI and S‐EMBI) with dimethyl 2,2′‐azobisisobutyrate (MAIB) were studied in methanol (MeOH) and in benzene kinetically and with electron spin resonance (ESR) spectroscopy. The initial polymerization rate (Rp) at 60 °C was given by Rp = k[MAIB]0.58 ± 0.05[RS‐EMBI]2.4 ± 0.l and Rp = k[MAIB]0.61 ± 0.05[S‐EMBI]2.3 ± 0.l in MeOH and Rp = k[MAIB]0.54 ± 0.05[RS‐EMBI]1.7 ± 0.l in benzene. The rate constants of initiation (kdf), propagation (kp), and termination (kt) as elementary reactions were estimated by ESR, where kd is the rate constant of MAIB decomposition and f is the initiator efficiency. The kp values of RS‐EMBI (0.50–1.27 L/mol s) and S‐EMBI (0.42–1.32 L/mol s) in MeOH increased with increasing monomer concentrations, whereas the kt values (0.20?7.78 × 105 L/mol s for RS‐EMBI and 0.18?6.27 × 105 L/mol s for S‐EMBI) decreased with increasing monomer concentrations. Such relations of Rp with kp and kt were responsible for the unusually high dependence of Rp on the monomer concentration. The activation energies of the elementary reactions were also determined from the values of kdf, kp, and kt at different temperatures. Rp and kp of RS‐EMBI and S‐EMBI in benzene were considerably higher than those in MeOH. Rp of RS‐EMBI was somewhat higher than that of S‐EMBI in both MeOH and benzene. Such effects of the kinds of solvents and monomers on Rp were explicable in terms of the different monomer associations, as analyzed by 1H NMR. The copolymerization of RS‐EMBI with styrene was examined at 60 °C in benzene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1819–1830, 2003  相似文献   

5.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(21) 5559 . The initiator efficiency, f, of 2,2′‐azobis(isobutyronitrile) (AIBN) in dodecyl acrylate (DA) bulk free‐radical polymerizations has been determined over a wide range of monomer conversion in high‐molecular‐weight regimes (Mn ? 106 g mol?1 [? 4160 units of DA)] with time‐dependent conversion data obtained via online Fourier transform near infrared spectroscopy (FTNIR) at 60 °C. In addition, the required initiator decomposition rate coefficient, kd, was determined via online UV spectrometry and was found to be 8.4 · 10?6 s?1 (±0.5 · 10?6 s?1) in dodecane, n‐butyl acetate, and n‐dodecyl acetate at 60 °C. The initiator efficiency at low monomer conversions is relatively low (f = 0.13) and decreases with increasing monomer to polymer conversions. The evolution of f with monomer conversion (in high‐molecular‐weight regimes), x, at 60 °C can be summarized by the following functionality: f60 °C (x) = 0.13–0.22 · x + 0.25 · x2 (for x ≤ 0.45). The reported efficiency data are believed to have an error of >50%. The ratio of the initiator efficiency and the average termination rate coefficient, 〈kt±, (f/〈kt〉) has been determined at various molecular weights for the generated polydodecyl acrylate (Mn = 1900 g mol?1 (? 8 units of DA) up to Mn = 36,500 g mol?1 (? 152 units of DA). The (f/〈kt〉) data may be indicative of a chain length‐dependent termination rate coefficient decreasing with (average) chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5170–5179, 2004  相似文献   

6.
This work was aimed at studying variations in the termination mechanism occurring during the after‐effects of a light‐induced polymerization of a dimethacrylate monomer after the irradiation had been discontinued. The experimental method was based on differential scanning calorimetry. The initiation was stopped at various moments of the reaction corresponding to different degrees of double‐bond conversion (starting conversions). Three termination models: monomolecular, bimolecular, and mixed were used to calculate the ratio of the bimolecular termination and propagation rate coefficients ktb/kp and/or the monomolecular termination rate coefficient ktm. The models were determined over short time intervals (conversion increments) of the dark reaction giving different values of rate coefficients for each time interval (interval approximation method). Two‐stage statistical analysis was used to find the model that best reproduced the experimental data obtained for each conversion increment. This enabled variations in the termination mechanism during the after‐effects to be followed. It was found that the termination mechanism changed with the time of the dark reaction from the bimolecular reaction to the mixed reaction when the light was cut off at low and medium double‐bond conversions. At higher starting conversions a monomolecular termination mechanism dominated from the beginning of the dark reaction. The mixed termination model was the only model to describe correctly the variations of rate coefficients in the dark, i. e., the increase in ktm and the decreasein the ktb/kp ratio.  相似文献   

7.
Pulsed laser polymerization (PLP) coupled to size exclusion chromatography (SEC) is considered to be the most accurate and reliable technique for the determination of absolute propagation rate coefficients, kp. Herein, kp data as a function of temperature were determined via PLP‐SEC for three acrylate monomers that are of particular synthetic interest (e.g., for the generation of amphiphilic block copolymers). The high‐Tg monomer isobornyl acrylate (iBoA) as well as the precursor monomers for the synthesis of hydrophilic poly(acrylic acid), tert‐butyl acrylate (tBuA), and 1‐ethoxyethyl acrylate (EEA) were investigated with respect to their propagation rate coefficient in a wide temperature range. By application of a 500 Hz laser repetition rate, data could be obtained up to a temperature of 80 °C. To arrive at absolute values for kp, the Mark‐Houwink parameters of the polymers have been determined via on‐line light scattering and viscosimetry measurements. These read: K = 5.00 × 105 dL g−1, a = 0.75 (piBoA), K = 19.7 × 105 dL g−1, a = 0.66 (ptBA) and K = 1.53 × 105 dL g−1, a = 0.85 (pEEA). The bulky iBoA monomer shows the lowest propagation rate coefficient among the three monomers, while EEA is the fastest. The activation energies and Arrhenius factors read: (iBoA): log(A/L mol−1 s−1) = 7.05 and EA = 17.0 kJ mol−1; (tBuA): log(A/L mol−1 s−1) = 7.28 and EA = 17.5 kJ mol−1 and (EEA): log(A/L mol−1 s−1) = 6.80 and EA = 13.8 kJ mol−1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6641–6654, 2009  相似文献   

8.

Radical copolymerization reaction of vinyl acetate (VA) and methyl acrylate (MA) was performed in a solution of benzene‐d6 using benzoyl peroxide (BPO) as the initiator at 60°C. Kinetic studies of this copolymerization reaction were investigated by on‐line 1H‐NMR spectroscopy. Individual monomer conversions vs. reaction time, which was followed by this technique, were used to calculate the overall monomer conversion, as well as the monomer mixture and the copolymer compositions as a function of time. Monomer reactivity ratios were calculated by various linear and nonlinear terminal models and also by simplified penultimate model with r 2(VA)=0 at low and medium/high conversions. Overall rate coefficient of copolymerization was calculated from the overall monomer conversion vs. time data and k p  . k t ?0.5 was then estimated. It was observed that k p  . k t ?0.5 increases with increasing the mole fraction of MA in the initial feed, indicating the increase in the polymerization rate with increasing MA concentration in the initial monomer mixture. The effect of mole fraction of MA in the initial monomer mixture on the drifts in the monomer mixture and copolymer compositions with reaction progress was also evaluated experimentally and theoretically.  相似文献   

9.
The RAFT (co)polymerization kinetics of methyl methacrylate (MMA) and n‐butyl acrylate (BA) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was studied with various RAFT concentrations and monomer compositions. The homopolymerization of MMA gave the highest rate. Increasing the BA fraction fBA dramatically decreased the copolymerization rate. The rate reached the lowest point at fMMA ~ 0.2. This observation is in sharp contrast to the conventional RAFT‐free copolymerization, where BA homopolymerization gave the highest rate and the copolymerization rate decreased monotonously with increasing fMMA. This peculiar phenomenon can be explained by the RAFT retardation effect. The RAFT copolymerization rate can be described by 〈Rp〉/〈Rp0 = (1 + 2(〈kc〉/〈kt〉)〈K〉)[RAFT]0)?0.5, where 〈Rp0 is the RAFT‐free copolymerization rate and 〈K〉 is the apparent addition–fragmentation equilibrium coefficient. A theoretical expression of 〈K〉 based on a terminal model of addition and fragmentation reactions was derived and successfully applied to predict the RAFT copolymerization kinetics with the rate parameters obtained from the homopolymerization systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3098–3111, 2007  相似文献   

10.
Pulsed‐laser induced polymerization is modeled via an approach presented in a previous paper.[1] An equation for the time dependence of free‐radical concentration is derived. It is shown that the termination rate coefficient may vary significantly as a function of time after applying the laser pulse despite of the fact that the change in monomer concentration during one experiment is negligible. For the limiting case of tc–1 (kpM)–1, where c is a dimensionless chain‐transfer constant, kp the propagation rate coefficient and M the monomer concentration, an analytical expression for kt is derived. It is also shown that time‐resolved single pulse‐laser polymerization (SP–PLP) experiments can yield the parameters that allow the modeling of kt in quasi‐stationary polymerization. The influence of inhibitors is also considered. The conditions are analyzed under which (t) curves recorded at different extents of laser‐induced photo‐initiator decomposition intersect. It is shown that such type of behavior is associated with a chain‐length dependence of kt.  相似文献   

11.
The kinetics of the photoinitiated polymerization of lauryl acrylate (LA), 1,6-hexanedioldiacrylate (HDDA) and pentaerythritol tetraacrylate (PET4A) have been investigated using differential scanning calorimetry (DSC). An autoacceleration phenomenon is observed with the multifunctional acrylates, but not with lauryl acrylate. The empirical dependences of reaction rate on such parameters as incident light intensity, initiator concentration, and temperature have been established and are in general found to vary with monomer conversion. Apparent activation energies for the photopolymerizations have been determined from rate versus temperature data. The multifunctional acrylates show an increasing activation energy with monomer conversion, whereas the apparent activation energy for lauryl acrylate not only decreases with conversion, but becomes negative at conversions greater than about 30%. The ratio kp/k is calculated from rate versus conversion data under constant illumination and the (independently determined) initiation rate. Analysis of rate versus time data under nonsteady-state conditions (light turned off) yields the ratio kt/kp. With these two ratios the rate constants for propagation (kp) and termination (kt) may be separated and their respective values calculated. Both kp and kt are found to decrease substantially with monomer conversion, indicating a significant change in the rates of both the propagation and termination steps as the polymerization advances. These observations are explained in terms of a radical isolation phenomenon and diffusion control of the propagation step.  相似文献   

12.
Aqueous acrylic acid in the presence of cupric chloride has been subjected to γ-irradiation under various reaction conditions and the molecular weights of the resultant poly(acrylic acid) measured. The results, taken in conjunction with previous findings on the dependence of the rate of polymerization on intensity, monomer concentration, and cupric chloride concentration, indicate chain termination solely by cupric ion (rate constant ktCu) and chain transfer to polymer (rate constant kf). Values have been obtained for ktCu/kp, kf/kp and G(radical) of acrylic acid. On the basis of these data a theoretical chain-length distribution has been derived which agrees well with distribution measured by gel-permeation chromatography.  相似文献   

13.
The effects of non‐ideal initiator decomposition, i.e., decomposition into two primary radicals of different reactivity toward the monomer, and of primary radical termination, on the kinetics of steady‐state free‐radical polymerization are considered. Analytical expressions for the exponent n in the power‐law dependence of polymerization rate on initiation rate are derived for these two situations. Theory predicts that n should be below the classical value of 1/2. In the case of non‐ideal initiator decomposition, n decreases with the size of the dimensionless parameter α ≡ (ktz /kdz) √rinkt, where ktz is the termination rate coefficient for the reaction of a non‐propagating primary radical with a macroradical, kdz is the first‐order decomposition rate coefficient of non‐propagating (passive) radicals, rin is initiation rate, and kt is the termination rate coefficient of two active radicals. In the case of primary radical termination, n decreases with the size of the dimensionless parameter βkt,s rin1/2/kp,s M rt,l1/2, where kt,s is the termination rate coefficients for the reaction of a primary (“short”) radical with a macroradical, kt,l is the termination rate coefficients of two large radicals, kp,s is the propagation rate coefficient of primary radicals and M is monomer concentration. As kt is deduced from coupled parameters such as kt /kp, the dependence of kp on chain length is also briefly discussed. This dependence is particularly pronounced at small chain lengths. Moreover, effects of chain transfer to monomer on n are discussed.  相似文献   

14.
The photosensitized polymerization of styrene in bulk was investigated in the temperature range of 25–70°C with respect to the average rate coefficient of bimolecular chain termination t, especially its chain length dependence at low conversions, by means of pulsed laser polymerization (PLP). Three methods were applied: two of them were based on equations originally derived for chain length independent termination taking the quantity kt contained therein as an average t, while the third one consisted in a nonlinear fit of the experimental chain length distribution (CLD) obtained at very low pulse frequencies (LF‐PLP) to a theoretical equation. The exponent b characterizing the extent of chain length dependence was unanimously found to decrease from about 0.17–0.20 at 25°C to 0.08–0.11 at 70°C, slightly depending on which of the three methods was chosen. This trend toward more “ideal” polymerization kinetics with rise of polymerization temperature is tentatively ascribed to a quite general type of polymer solution behavior that consists in a (slow) approach to a lower critical solution temperature (LCST), which is associated with a decrease of the solvent quality of the monomer toward the polymer, an effect that should be accompanied with a decrease of the parameter b. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 697–705, 2000  相似文献   

15.
On the basis of simulated data two ways of evaluating individual rate constants by combining kp2/kt and kp /kt (kp , kt = rate constants of chain propagation and termination, respectively) were checked considering the chain‐length dependence of kt. The first way tried to make use of the fact that pseudostationary polymerization yields data for kp2/kt as well as for kp /kt referring to the very same experiment, in the second way kp2/kt (from steady state experiments) and kp/kt data referring to the same mean length of the terminating radical chains were compared. In the first case no meaningful data at all could be obtained because different averages of kt are operative in the expressions for kp /kt and kp2/kt. In spite of the comparatively small difference between these two averages (≈15% only) this makes the method collapse. The second way, which can be regarded as an intelligent modification of the “classical” method of determining individual rate constants, at least succeeded in reproducing the correct order of magnitude of the individual rate constants. However, although stationary and pseudostationary experiments independently could be shown to return the same kt for the same average chain‐length of terminating radicals within extremely narrow limits no reasonable chain‐length dependence of kt could be derived in this way. The reason is an extreme sensitivity of the pair of equations for kp/kt and kp2/kt towards small errors and inconsistencies which renders the method unsuccessful even for the high quality simulation data and most probably makes it even collapse for real data. This casts a characteristic light on the unsatisfactory situation with respect to individual rate constants determined in the classical way, regardless of a chain‐length dependence of termination. As a consequence, all efforts of establishing the chain‐length dependence of kt are recommended to avoid this way and should rather resort to methods based on inserting a directly determined kp into the equations characteristic of kp2/kt or kp/kt, properly considering the chain‐length dependent character of kt.  相似文献   

16.
The bulk polymerization of 2‐ethylhexyl acrylate (2‐EHA), induced by a pulsed electron beam, was investigated with pulse radiolysis, gravimetry, and Fourier transform infrared spectroscopy. The roles of the dose rate, pulse frequency, and added acrylic acid (AA) in the polymerization of 2‐EHA were examined at ambient temperature. In the range of 12.6–71.2 Gy/pulse, the polymerization of 2‐EHA was dose‐rate‐dependent: at the same total dose, a lower dose rate yielded a higher conversion. Also, a lower pulse rate gave a higher conversion at the same total dose. The addition of up to 10 wt % AA showed no increase in the conversion of 2‐EHA at a low conversion (8 kGy), but at a higher conversion (16 kGy), a 20 wt % increase in the conversion of 2‐EHA was observed. The estimated values (1.6 ± 0.3) × 10?3 (dm3 s)3/2 mol?1 s?1/2 for kp(G/2kt)1/2 and 2.6 ± 0.8 dm3 s J?1 for 2ktG (where kp is the rate constant of propagation, kt is the rate constant of bimolecular termination, and G is the yield of free radicals) were obtained at relatively low conversions. The reaction rate constant of the addition of 2‐EHA· free radicals to the monomer was measured by pulse radiolysis and found to be 2.8 × 102 mol?1 dm3 s?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 196–203, 2003  相似文献   

17.
Chain length distributions have been calculated for polymers prepared by pulsed laser polymerization (PLP) under the condition that not only chain termination but also chain propagation is subject to chain length dependence. The interplay between these two features is analyzed with the chain length dependence of the rate coefficient of termination kt introduced in the form of a power law and that of propagation kp modeled by a Langmuir‐type decrease from an initial value for zero chain length to a constant value for infinite chain lengths. The rather complex situation is governed by two important factors: the first is the extent of the decay of radical concentration [R] during one period under pseudostationary conditions, while the second is that termination events are governed by [R]2 while the propagation goes directly with [R]. As a consequence there is no general recommendation possible as to which experimental value of kp is best taken as a substitute for the correct average of kp characterizing a specific experiment. The second point, however, is apparently responsible for the pleasant effect that the methods used so far for the determination of kt and its chain length dependence (i.e., plotting some average of kt versus the mean chain‐length of terminating radicals on a double‐logarithmic scale) are only subtly wrong with regard to a realistic chain length dependence. This is especially so for the quantity kt* (the average rate coefficient of termination derived from the rate of polymerization in a PLP system) and its chain length dependence.  相似文献   

18.
The free radical copolymerization of acrylonitrile (AN) with itaconic acid (IA) in dimethylsulfoxide (DMSO) initiated by azobisisobutyronitrile (AIBN) has been found to be chemically controlled even at high conversion. In order to explain this specific finding by Walling's kinetic model, a detailed study on the monomer reactivity ratios (MMRs), decomposition kinetics of AIBN and homopolymerization kinetics of AN was carried out in DMSO from 50 to 80°C. The results suggest that the reactivity ratio of IA is less than unity and always larger than that of AN. Thus, the reaction has an ideal copolymerization behavior when the temperature is increased. It is also found that decomposition of AIBN in DMSO is strictly first order and the decomposition rate constants (k d) determined by nitrogen evolution technique are acceptable. kp /k 0.5 t ratios of AN were estimated from the off-line conversion data under various monomer and initiator concentration. Additionally, the temperature dependences on MRRs, k d and kp /k 0.5 t were believed to follow the Arrhenius's law very well.  相似文献   

19.
The oxidative degradation of tricyclic antidepressants (TCA) was studied in the presence of a large excess of the oxidizing agent manganese(III) and its reduced form manganese(II) sulfate in acidic media. The products were detected and identified using UV–vis, ESI‐MS, IR, and EPR methods. The mechanism of the reaction was studied for the following two classes of TCA: 10,11‐dihydro‐5H‐dibenz[b, f]azepines and dibenz[b, f]azepines. The oxidative degradation between dibenz[b, f]azepines and the manganese(III) ions resulted in the formation of substituted acridine with the same substituent as in the origin dibenz[b, f]azepine derivative. The pseudo–first‐order rate constants (kobs) were determined for the degradation process. The dependences of the observed rate constants on the [MnIII] with a zero intercept were linear. The reaction between 10,11‐dihydro‐5H‐dibenz[b, f]azepines, and the manganese(III) sulfate ion resulted in oxidative dehydrogenation, which proceeded via the formation of the following two intermediates: a free organic radical and a dimer. Further oxidation of the second intermediate led to a positively charged radical dimer as the single final product. Linear dependences of the pseudo–first‐order rate constants (kobs) on the [MnIII] with a zero intercept were established for the degradation of 10,11‐dihydro‐5H‐dibenz[b, f]azepines. The observed rate constants were dependent on the [H+] and independent of the [TCA] within the excess concentration range of the manganese(III) complexes used in the isolation method. The radical product of the degradation of 10,11‐dihydro‐5H‐dibenz[b, f]azepines was not stable in the aqueous solution and was subsequently transformed to a nonradical dimer in the next slower step. The observed rate constants were independent of the [MnIII], independent of the [H+] and increased slightly with increasing TCA concentrations when TCA was used in excess. The mechanistic consequences of all of these results are discussed.  相似文献   

20.
We have characterized the effective rate constants for termination/trapping (kt/t) and propagation (kp) for solvent‐free cationic photopolymerizations of phenyl glycidyl ether for conversions up to 50%. We have performed dark‐cure experiments in which active centers are produced photochemically for a specified period of time until the initiating light is shuttered off, and then the polymerization rate is monitored in the dark. This method is especially well suited for characterizing cationic polymerizations because of the long active center lifetimes. Our analysis provides profiles of the instantaneous kinetic rate constants as functions of conversion (or time). For photopolymerizations of phenyl glycidyl ether initiated with iodonium photoinitiators, kt/t and kp remain essentially invariant for conversions up to 50%. For the photoinitiator (tolycumyl) iodonium tetrakis (pentafluorophenyl) borate (IPB), the values of kt/t at 50 and 60 °C are 0.027 and 0.033 min?1, respectively. The corresponding values of kt/t for diaryliodonium hexafluoroantimonate (IHA) are 0.041 and 0.068 min?1. The values of kp at 50 °C for IPB and IHA are 0.6 and 0.4 L mol?1 s?1, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2064–2072, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号