首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methoxydimethylsilane and chlorodimethylsilane‐terminated telechelic polyoctenomer oligomers (POCT) have been prepared by acyclic diene metathesis (ADMET) chemistry using Grubbs' ruthenium Ru(Cl2)(CHPh)(PCy3)2 [Ru] or Schrock's molybdenum Mo(CH CMe2Ph)(N 2,6 C6H3i Pr2)(OCMe(CF3)2)2 [Mo] catalysts. These macromolecules have been characterized by FTIR, 1H‐, 13C‐, and 29Si‐NMR spectroscopy. The molecular weight distributions of these polymers have been determined by GPC and vapor pressure osmometry (VPO). The number‐average molecular weight (Mn) values of the telechelomers are dictated by the initial ratio of the monomer to the chain limiter. The termini of these oligomers (Mn = 2000) can undergo a condensation reaction with hydroxy‐terminated poly(dimethylsiloxane) (PDMS) macromonomer (Mn = 3300) [HO Si(CH3)2 O { Si(CH3)2O }x  Si(CH3)3], producing an ABA‐type block copolymer, as follows: (CH3)3SiO [ Si(CH3)2O ]x [ CHCH (CH2)6 ]y [ OSi(CH3)2 ]x OSi(CH3)3. The block copolymers were characterized by 1H‐ and 13C‐NMR spectroscopy, VPO, and GPC, as well as elemental analysis, and were determined by VPO to have a Mn of 8600. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 849–856, 1999  相似文献   

2.
Hexaisopropoxoniobates/tantalates of lathanides of the type [Ln{(μ‐OPri)2M(OPri)4}3] (M = Nb, Ln = Y( 1 ), La( 2 ), Nd( 3 ), Er( 4 ), Lu( 5 ); M = Ta, Ln = Y( 6 ), Gd( 7 )) have been prepared by the reactions of LnCl3.3PriOH with three equivalents of KM(OPri)6 in benzene. Reactions in 1:2 molar ratio of LnCl3.3PriOH with KTa(OPri)6 yielded derivatives of the type [{(PriO)3Ta(μ‐OPri)3}Ln{(μ‐OPri)2Ta(OPri)4}(Cl)] (Ln = Y( 8 ), Gd( 9 )), which on interactions with one equivalent of KOPri afforded [{(PriO)3Ta(μ‐OPri)3}Ln {(μ‐OPri)2Ta(OPri)4}(OPri)] (Ln = Y( 10 ), Gd( 11 )). All these derivatives have been characterized by elemental analyses and molecular weight measurements as well as by their spectroscopic [IR, 1H and 13C NMR (Y, La, Lu), electronic (Nd, Er)] studies. 89Y NMR studies have also been carried out on derivatives ( 6 ), ( 8 ), and ( 10 ).  相似文献   

3.
The reaction of 2‐methoxybenzyl alcohol with one molar equiv of R2AIX in diethyl ether at 0°C gives [(2‐MeOC6H4CH2‐μ‐O)AlRX]2 ( 1 : R = Et, X = Cl, 2 : R = X = Et). In addition, 2,4‐di‐tert‐butylphenol reacts with iBu3Al affording a four‐coordinated aluminum compound [(μ‐2,4‐tBu2‐C6H4O)Al(iBu)2]2 ( 4 ). Single crystal X‐ray structure analysis of 4 shows a C2h‐symmetry with a planar Al2O2 core. Ring‐opening polymerization (ROP) of caprolactones initiated by 1, 4 and [(μ‐OCH2C6H4OMe)Al(iBu)2]2 ( 3 ) is performed and polyesters with narrow molecular weight distributions were obtained from the “living” ROP of caprolactones. 1H NMR spectroscopic studies of PCL reveal that the initiator of 1 and 3 is through the Al‐OAr function, but the initiator of 4 is through the Al‐ iBu group.  相似文献   

4.
The molecular structure of the phase—stable at room temperature—for the polymer with formula [ p C6H4 COO p C6H3(R) p C6H3(R) OOC p C6H4 O (CH2)10O ]x, with R =  CH2 CHCH2, is reported. The cell is hexagonal (a = b = 13.43 Å, c = 33.3 Å, γ = 120°), space group P63, six chains per unit cell (dcalcd = 1.23 g cm−3). The six chains are packed together to give a bundle with the center of mass set at the origin of the unit cell. The allyl groups are placed inside the bundle, thus explaining the unexpected reactivity of the double bonds to give crosslinking when fiber samples are annealed in the solid state. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1601–1607, 1999  相似文献   

5.
The reactions of 3,3′‐diaminobenzidine with 1,12‐dodecanediol in 1 : 1–1:3 molar ratios in the presence of RuCl2(PPh3)3 catalyst give poly(alkylenebenzimidazole), [ (CH2)11 O (CH2)11 Im / (CH2)10 Im ]n (Im: 5,5′‐dibenzimidazole‐2,2′‐diyl) (Ia‐Id) in 71–92% yields. The relative ratio between the [(CH2)11 O (CH2)11 Im ] unit (A) and the [‐ (CH2)10 Im ] unit (B) in the polymer chain varies depending on the ratio of the substrates used. The polymer Ia obtained from the 1 : 3 reaction contains these structural units in a 98 : 2 ratio. The polymers are soluble in polar solvents such as DMF (N,N‐dimethylformamide), DMSO (dimethyl sulfoxide), and NMP (N‐methyl‐2‐pyrrolidone) and have molecular weights Mn (Mw) of 4,200–4,800 (4,800–6,500) by GPC (polystyrene standard). The polymerization of the diol and 3,3′‐diaminobenzidine in higher molar ratios leads to partial cross‐linking of the resulting polymers Ie and If via condensation of imidazole NH group with CH2OH group. Similar reactions of 3,3′‐diaminobenzidine with α,ω‐diols, HO(CH2)mOH (m = 4–10), in a 1 : 3 molar ratio give the polymers containing [ (CH2)m−1 O (CH2) m−1 Im ] and [ (CH2) m−2 Im ] units with partial cross‐linked structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1383–1392, 1999  相似文献   

6.
Polyethylenes and highly syndiotactic poly(propylene)s possessing chain end hydroxyl groups were synthesized by living polymerizations using L2TiCl2 [ 1 , L: C6F5NCH(2 O C6H3 3 tBu)]/MAO and functionalized α‐olefins, H2CCH(CH2)n Y [ 2 ; YOAlMe2, n = 4 ( 2a ); YOSiMe3, n = 9 ( 2b )]. Because the primary insertion of 2 to a cationic species L2Ti+ Me ( 3 ) derived from 1 /MAO is much faster than the successive secondary insertion of 2 , addition of an equimolar amount of 2 to 3 resulted in the quantitative formation of L2Ti+ CH2 CH(Me) (CH2)n Y [ 4 ; YOAlMe2, n = 4 ( 4a ); YOSiMe3, n = 9 ( 4b )]. These cationic species 4 served as functionalized initiators for the living polymerization of both ethylene and propylene and afforded polyolefins having extremely narrow molecular weight distributions and a hydroxyl group at the initiating chain end. The terminating chain end of the syndiotactic poly(propylene)s was also functionalized by adding an excess amount of 2b as a chain end capping agent to the living L2Ti–polymeryl species. Due to much slower insertion of the second molecule of 2b relative to the first one, the obtained polymers were end capped quantitatively by a single molecule of 2b . Telechelic syndiotactic poly(propylene)s were successfully synthesized through a living polymerization initiated by 4b and an end capping using 2b .

  相似文献   


7.
Calculations of nitrogen NMR parameters [chemical shifts δN and indirect nuclear spin–spin coupling constants J(N,N), J(N,13C), J(29Si,N)] of noncyclic azo‐compounds R1 NN R2 (R1, R2 = H, Me, Ph, SiH3, SiMe3) and cyclic azo‐compounds [NNCH2, NN(CH2)3 NN(CH2)2SiH2, and NN(SiH2CH2SiH2)] by density functional theory (DFT) methods [B3LYP/6‐311+G(d,p) level of theory] provide data in reasonable agreement with experimental values. The influence of cis‐ and trans‐geometry is reflected by the calculations, and amino‐nitrenes are also included for comparison. The spin–spin coupling constants are analyzed with respect to contact (Fermi contact term, FC) and non‐ contact contributions (paramagnetic and diamagnetic spin‐orbital terms, PSO and DSO, and spin‐dipole term, SD). Bis(trimethylsilyl)diazene 6a can be generated by an alternative method, using the reaction of bis(trimethylsilyl)sulfur diimide with bis‐ (trimethylsilyl)amino‐trimethylsilylimino‐phosphane. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:84–91, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20075  相似文献   

8.

Reactions of bis ( g -diketonato) aluminium(III)-di- w -isopropoxo-di-isopropoxo-aluminium (III), [CH3COCHCOR)2Al( w -OPri)2Al(OPri) 2], with triphenylsilanol, Ph3SiOH, in 1:1 and 1:2 molar ratios and with diphenylsilanediol, Ph2Si(OH)2, in a 1:1 molar ratio, have resulted in the synthesis of [(CH3COCHCOR)2Al( w -OPri)2Al(OSiPh3)(OPri)], [(CH3COCHCOR)2Al( w -OPri)2Al(OSiPh3)2] and [(CH3COCHCOR)2Al( w -OPri)2Al(OSiPh2O], respectively. These are soluble in a variety of organic solvents ( e.g. , benzene, chloroform and dimethylsulfoxide) and show dinuclear behaviour in chloroform. These derivatives have been characterized by elemental analyses, molecular weight measurements, IR and NMR (1H, 13C and 27Al) studies.  相似文献   

9.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   

10.
Aqueous‐phase dissociation constants (Ka) for the conjugate acids of a series of 2‐azidoethanamine bases: R1N(R2)CH2CH2N3 ( 1 , R1 = CH3, R2 = H; 2 , R1 = CH3, R2 = CH3; 3 , R1 = CH2CH3, R2 = CH2CH3; 4 , R1/R2 =  CH2CH2CH2CH2 ; 5 , R1/R2 =  CH2CH2OCH2CH2 ; 6 , R1 = CH2CH3, R2 = CH2CH2N3) were measured and found to fall between those for analogous unfunctionalized and cyano‐functionalized ethanamines. To explore the possibility of a relationship existing between the constants and molecular geometry, a theoretically based study was conducted. In it, the Gibbs free energies of aqueous‐phase (equilibrium) conformers of the bases and their conjugate acids were determined via a density functional theory/polarizable continuum model method. The results indicate that an attractive interaction between the amine and azide groups that underlies the lowest‐energy gas‐phase conformer of 2 is negated in an aqueous environment by solvent–solute interactions. The magnitudes of the free energy changes of solvation and −TS (entropic) energies of the conformers of the 2‐azidoethanamines and their conjugate acids are observed to correlate with the magnitude of the separation between the conformers' amine and azide groups. However, those correlations are not by themselves sufficient to predict the relative free energies of a molecule's conformers in an aqueous environment. That insufficiency is due to the influence of the correlations being mitigated by three other parameters that arise within the thermodynamic framework employed to compute the observable. The nature of those parameters is discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
Summary: The laser irradiation at 193 nm of a gaseous mixture of carbon disulfide and ethene induces the copolymerization of both compounds and affords the chemical vapour deposition of a C/S/H polymer, the composition of which indicates the reaction between two to three CS2 molecules and one C2H4 molecule. Polymer structure is interpreted on the basis of X‐ray photoelectron and FT‐IR spectra as consisting of >CS, >CC<,  CH2 CH2 , (CC)SnC4 − n,  C (CS) S ,  S (CS) S , and C S S C configurations. The gas‐phase copolymerization of carbon disulfide and ethene represents the first example of such a reaction between carbon disulfide and a common monomer.

Scheme showing the expected reaction of excited CS2 molecules with other CS2 molecules to form dimers, which then react with another CS2 molecule or add to ethene.  相似文献   


12.
Titanium(IV) complexes of the general formula TiL(OPr i )2 [where LH2 = R CH3 where R = ─C6H5, ─C6H4Cl(p)] were prepared by the interaction of titanium isopropoxide with sterically hindered Schiff bases derived from heterocyclic β -diketones in 1:1 molar ratio in dry benzene. The complexes TiL(OPr i )2 were used as versatile precursors for the synthesis of other titanium(IV) complexes. Titanium(IV) complexes of the type TiLL'(OPr i ) (where L'H═R1R2C═NOH, R1 = R2 = ─CH3; R1 = ─CH3,R2 = ─C6H5; R1 = ─COC6H5, R2 = ─C6H5) were synthesized by the reaction of TiL(OPr i )2 with ketooximes (L'H) in equimolar ratio in dry benzene. Another type of titanium(IV) complexes having the general formula TiLGH(OPr i ) (where GH2═HO─G─OH, G = ─CH2─CH2─) have been prepared by the reaction of TiL(OPr i )2 with glycol in 1:1 molar ratio in dry benzene. Plausible structures of these new titanium(IV) complexes have been proposed on the basis of analytical data, molecular weight measurements, and spectral studies.  相似文献   

13.
N-methyl-ethylidenimine (CH3 CHN CH3) was obtained by pyrolysis of 2-methylaziridine in a gas phase flow system, using quartz as a catalyst. Pyrolysis of aziridine gave mainly N-methyl-methylenimine (CH2N CH3). Under the conditions used in this work, pyrolysis of both compounds surprisingly showed cleavage of the CC-bond in the three-membered ring. No monomeric ethylidenimine (CH3 CHNH) could be isolated by pyrolysis of trimeric ethylidenimine (2,4,6-trimethyl-hexahydro-1,3,5-triazine), whereas N-vinyl-ethylidenimine (CH3 CHN CHCH2) could be identified as one of the pyrolysis products. NMR. data for N-methyl-ethylidenimine and N-vinyl-ethylidenimine are given for identification purposes.  相似文献   

14.
The structure and reactivity of a series of new ethylaminedithiazinanes and bis‐diethylaminedithiazinanes synthesized from formaldehyde, NaSH, and N,N‐dimethyl‐ethylene‐diamine ( 1 ), N‐methyl‐ethylene‐diamine ( 2 ), and N‐ethyl‐ethylene‐diamine ( 3 ) are reported. Compound 1 afforded 2‐([1,3,5]‐dithiazinan‐5‐yl)‐ethylene‐N,N‐dimethyl‐amine ( 4 ). The reaction of 4 with dry CH2Cl2 gave N‐{2‐([1,3,5]dithiazinan‐5‐yl)‐ethylene}‐N‐chloromethyl‐N,N‐dimethyl‐ammonium chloride ( 5 ) in high yield, whereas in wet CH2Cl2 and DMSO provided a mixture of 5 with N‐{2‐([1,3,5]‐dithiazinan‐5‐yl)‐ethylene}‐N,N‐dimethyl‐ammonium hydrochloride ( 6 ).bis‐{2‐([1,3,5]‐Dithiazinan‐5‐yl)‐ethylene‐N‐alkyl‐amino}‐methylene‐disulfides ( 7 ) and ( 8 ) formed by two dithiazinanes linked through the chain  (CH2)2 NRCH2 S S CH2 NR (CH2)2‐ ( 7 R = methyl, 8 R = ethyl) reacted with CH2Cl2 giving after neutralization of the hydrolysis products the ethylaminedithiazinanes with different pendant N‐groups [ (CH2)2NMeH2+( 9 );  (CH2)2NEtH2+ ( 10 );  (CH2)2NMeH ( 11 );  (CH2)2NEtH ( 12 );  (CH2)2NMeHBH3 ( 13 )  (CH2)2NEtHBH3 ( 14 ).  (CH2)2NMe2BH3 ( 15 ), and  (CH2)2NEtMeBH3.( 16 )]. The x‐ray diffraction analyses of compounds 5 , 6 , 9 , and 10 are reported. Variable temperature NMR experiments afforded the Δ G of the ring interconversion of the six‐membered heterocycles 6 , 9 , and 10 . © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:59–71, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20657  相似文献   

15.
Propargyl (HCC CH2) and methyl radicals were produced through the 193‐nm excimer laser photolysis of mixtures of C3H3Cl/He and CH3N2CH3/He, respectively. Gas chromatographic and mass spectrometric (GC/MS) product analyses were employed to characterize and quantify the major reaction products. The rate constants for propargyl radical self‐reactions and propargyl‐methyl cross‐combination reactions were determined through kinetic modeling and comparative rate determination methods. The major products of the propargyl radical combination reaction, at room temperature and total pressure of about 6.7 kPa (50 Torr) consisted of three C6H6 isomers with 1,5‐hexadiyne(CHC CH2 CH2 CCH, about 60%); 1,2‐hexadiene‐5yne (CH2CC CH2 CCH, about 25%); and a third isomer of C6H6 (∼15%), which has not yet been, with certainty, identified as being the major products. The rate constant determination in the propargyl‐methyl mixed radical system yielded a value of (4.0 ± 0.4) × 10−11 cm3 molecule−1 s−1 for propargyl radical combination reactions and a rate constant of (1.5 ± 0.3) × 10−10 cm3 molecule−1 s−1 for propargyl‐methyl cross‐combination reactions. The products of the methyl‐propargyl cross‐combination reactions were two isomers of C4H6, 1‐butyne (about 60%) and 1,2‐butadiene (about 40%). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 118–124, 2000  相似文献   

16.
A series of group 4 metal complexes bearing amine‐bis(phenolate) ligands with the amino side‐arm donor: (μ‐O)[Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)2ZrCl]2 ( 1a ), R2N(CH2)2N(CH2‐2‐O‐3‐R1‐5‐R2‐C6H2)2TiCl2 (R = Me, R1, R2 = tBu ( 2a ), R = iPr, R1, R2 = tBu ( 2b ), R = iPr, R1 = tBu, R2 = OMe ( 2c )), and Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)(CH2‐2‐O‐C6H4)TiCl2 ( 2d ) are used in ethylene and propylene homopolymerization, and ethylene/1‐octene copolymerization. All complexes, upon their activation with Al(iBu)3/Ph3CB(C6F5)4, exhibit reasonable catalytic activity for ethylene homo‐ and copolymerization giving linear polyethylene with high to ultra‐high molecular weight (600·× 103–3600·× 103 g/mol). The activity of 1a /Al(iBu)3/Ph3CB(C6F5)4 shows a positive comonomer effect, leading to over 400% increase of the polymer yield, while the addition of 1‐octene causes a slight reduction of the activity of the complexes 2a‐2d . The complexes with the NMe2 donor group ( 2a , 2d , 1a ) display a high ability to incorporate a comonomer (up to 9–22 mol%), and the use of a bulkier donor group, N(iPr)2 ( 2b , 2c ), results in a lower 1‐octene incorporation. All the produced copolymers reveal a broad chemical composition distribution. In addition, the investigated complexes polymerized propylene with the moderate ( 1a , 2a ) to low ( 2b‐2d ) activity, giving polymers with different microstructures, from purely atactic to isotactically enriched (mmmm = 28%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2467–2476  相似文献   

17.
Some new types of mononuclear derivatives, AlL(1–4)L(1–4)H ( 1a–1d ) of aluminium were synthesized by the reaction of Al(OPri)3 and LH2 [XC(NYOH)CHC(R)OH], X = CH3, Y = (CH2)2, R = CH3(L1H2); X = C6H5, Y = (CH2)2, R = CH3(L2H2); X = CH3, Y = (CH2)3, R = CH3(L3H2); X = C6H5, Y = (CH2)3, R = CH3(L4H2) in 1:2 molar ratio in refluxing benzene. Reactions of AlL(1–4)L(1–4)H with hexamethyldisilazane in 2:1 molar ratio yielded some new ligand bridged heterodinuclear derivatives AlL(1–4)L(1–4)SiMe3 ( 2a – 2d ). All these newly synthesized derivatives were characterized by elemental analysis and molecular weight measurements. Tentative structures were proposed on the basis of IR and NMR spectra (1H, 13C, 27 Al and 29Si) and FAB‐mass studies. Schiff base ligands and their mono‐ and heterodi‐nuclear derivatives with aluminium have been screened for fungicidal activities. These compounds showed significant antifungal activity against Aspergillus niger and A. flavus. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Reactions of Al(OPri)3 with LH2 =?[R′C(NYOH)CHC(R)OH] R=R′=CH3, Y =?(CH2)2 (L1H2); R =?CH3, R′ =?C6H5, Y =?(CH2)2 (L2H2); R =?R′ =?CH3, Y =?(CH2)3 (L3H2); R =?CH3, R′ =?C6H5, Y =?(CH2)3 (L4H2), in 1 : 2 molar ratio give mononuclear derivatives of aluminium AlLLH (1a1d). Equimolar reactions of AlLLH with M(OPri)3 (M =?Al and B) yield homo- and hetero-dinuclear derivatives AlLLM(OPri)2 (M=Al=2a2d M=B=3a3d). Reaction of 2a with L1H2 affords AlL1L1AlL1 (4). All these derivatives have been characterized by elemental analysis, molecular weight measurements and plausible structures have been suggested on the basis of IR, NMR [1H, 13C, 27Al and 11B] spectral data and FAB-mass studies of 2b and 3b. Schiff base L1H2 and its mononuclear derivative with aluminium (AlL1L1H) have been screened for their antibacterial activity against Escherischia coli and Bacillus subtilis.  相似文献   

19.
Reactions of Zr{Al(OPri)4}2Cl2 or Zr{Nb(OPri)6}2Cl2 with KNb(OPri)6/KAl(OPri)4 and diethanolamines RN(CH2CH2OH)2 [R=H(LHH2), Me(LMeH2), and Ph(LPhH2)] in the presence of two equivalents of Et3N yield interesting hetero(bi- and tri-) nuclear derivatives (1)–(8) All of these new derivatives have been characterized by elemental analyses, molecular weight measurements, and spectroscopic studies.Ram C. Mehrotra - Deceased  相似文献   

20.
The μ‐amino–borane complexes [Rh2(LR)2(μ‐H)(μ‐H2B=NHR′)][BArF4] (LR=R2P(CH2)3PR2; R=Ph, iPr; R′=H, Me) form by addition of H3B?NMeR′H2 to [Rh(LR)(η6‐C6H5F)][BArF4]. DFT calculations demonstrate that the amino–borane interacts with the Rh centers through strong Rh‐H and Rh‐B interactions. Mechanistic investigations show that these dimers can form by a boronium‐mediated route, and are pre‐catalysts for amine‐borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号