首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modeling assumption for such experiments is that responses from units within a block are dependent. Accounting for such dependencies in both the design of the experiment and the modeling of the resulting data when the response is not normally distributed can be challenging, particularly in terms of the computation required to find an optimal design. The application of copulas and marginal modeling provides a computationally efficient approach for estimating population‐average treatment effects. Motivated by an experiment from materials testing, we develop and demonstrate designs with blocks of size two using copula models. Such designs are also important in applications ranging from microarray experiments to experiments on human eyes or limbs with naturally occurring blocks of size two. We present a methodology for design selection, make comparisons to existing approaches in the literature, and assess the robustness of the designs to modeling assumptions.  相似文献   

2.
We present efficient partial differential equation methods for continuous time mean‐variance portfolio allocation problems when the underlying risky asset follows a jump‐diffusion. The standard formulation of mean‐variance optimal portfolio allocation problems, where the total wealth is the underlying stochastic process, gives rise to a one‐dimensional (1D) nonlinear Hamilton–Jacobi–Bellman (HJB) partial integrodifferential equation (PIDE) with the control present in the integrand of the jump term, and thus is difficult to solve efficiently. To preserve the efficient handling of the jump term, we formulate the asset allocation problem as a 2D impulse control problem, 1D for each asset in the portfolio, namely the bond and the stock. We then develop a numerical scheme based on a semi‐Lagrangian timestepping method, which we show to be monotone, consistent, and stable. Hence, assuming a strong comparison property holds, the numerical solution is guaranteed to converge to the unique viscosity solution of the corresponding HJB PIDE. The correctness of the proposed numerical framework is verified by numerical examples. We also discuss the effects on the efficient frontier of realistic financial modeling, such as different borrowing and lending interest rates, transaction costs, and constraints on the portfolio, such as maximum limits on borrowing and solvency. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 664–698, 2014  相似文献   

3.
The r‐Laplacian has played an important role in the development of computationally efficient models for applications, such as numerical simulation of turbulent flows. In this article, we examine two‐level finite element approximation schemes applied to the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity, where r is the order of the power‐law artificial viscosity term. In the two‐level algorithm, the solution to the fully nonlinear coarse mesh problem is utilized in a single‐step linear fine mesh problem. When modeling parameters are chosen appropriately, the error in the two‐level algorithm is comparable to the error in solving the fully nonlinear problem on the fine mesh. We provide rigorous numerical analysis of the two‐level approximation scheme and derive scalings which vary based on the coefficient r, coarse mesh size H, fine mesh size h, and filter radius δ. We also investigate the two‐level algorithm in several computational settings, including the 3D numerical simulation of flow past a backward‐facing step at Reynolds number Re = 5100. In all numerical tests, the two‐level algorithm was proven to achieve the same order of accuracy as the standard one‐level algorithm, at a fraction of the computational cost. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

4.
The Birnbaum‐Saunders (BS) distribution is a model that frequently appears in the statistical literature and has proved to be very versatile and efficient across a wide range of applications. However, despite the growing interest in the study of the BS distribution, quantile regression modeling has not been considered for this distribution. To fill this gap, we introduce a class of quantile regression models based on the BS distribution, which allows us to describe positive and asymmetric data when a quantile must be predicted using covariates. We use an approach based on a quantile parameterization to generate the model, permitting us to consider a similar framework to generalized linear models, providing wide flexibility. The methodology proposed includes a thorough study of theoretical properties and practical issues, such as maximum likelihood parameter estimation and diagnostic analytics based on local influence and residuals. The performance of the residuals is evaluated by simulations, whereas an illustrative example of income data is conducted using the methodology to show its potential for applications. The numerical results report an adequate performance of the approach to quantile regression, indicating that the BS distribution is a good modeling choice when dealing with data that have both positive support and asymmetry. The economic implications of our investigation are discussed in the final section. Hence, it can be a valuable addition to the tool kit of applied statisticians and econometricians.  相似文献   

5.
Consumer markets have been studied in great depth, and many techniques have been used to represent them. These have included regression‐based models, logit models, and theoretical market‐level models, such as the NBD‐Dirichlet approach. Although many important contributions and insights have resulted from studies that relied on these models, there is still a need for a model that could more holistically represent the interdependencies of the decisions made by consumers, retailers, and manufacturers. When the need is for a model that could be used repeatedly over time to support decisions in an industrial setting, it is particularly critical. Although some existing methods can, in principle, represent such complex interdependencies, their capabilities might be outstripped if they had to be used for industrial applications, because of the details this type of modeling requires. However, a complementary method—agent‐based modeling—shows promise for addressing these issues. Agent‐based models use business‐driven rules for individuals (e.g., individual consumer rules for buying items, individual retailer rules for stocking items, or individual firm rules for advertizing items) to determine holistic, system‐level outcomes (e.g., to determine if brand X's market share is increasing). We applied agent‐based modeling to develop a multi‐scale consumer market model. We then conducted calibration, verification, and validation tests of this model. The model was successfully applied by Procter & Gamble to several challenging business problems. In these situations, it directly influenced managerial decision making and produced substantial cost savings. © 2010 Wiley Periodicals, Inc. Complexity, 2010  相似文献   

6.
The main idea of this paper is to utilize the adaptive iterative schemes based on regularization techniques for moderately ill‐posed problems that are obtained by a system of linear two‐dimensional Volterra integral equations with a singular matrix in the leading part. These problems may arise in the modeling of certain heat conduction processes as well as in the dynamic simulation packages such as compressible flow through a plant piping network. Owing to the ill‐posed nature of the first kind Volterra equation that appears in the system, we will focus on the two families of regularization algorithms, ie, the Landweber and Lavrentiev type methods, where we treat both the exact and perturbed data. Our aim is to work directly with the original Volterra equations without any kind of reduction. Two fast iterative algorithms with reasonable computational complexity are developed. Numerical experiments on a few test problems are used to illustrate the validity and efficiency of the proposed iterative methods in comparison with the classical regularization methods.  相似文献   

7.
R. Callies 《PAMM》2003,3(1):559-562
A multi‐model approach is presented which allows the efficient and stable coupling between high precision algorithms for DAE boundary value problems arising from constrained optimal control problems and model data obtained with rather low accuracy from finite element solutions of PDEs. A model hierarchy with increasing approximation accuracy serves as an intermediate layer. Numerical efficiency is demonstrated for an example from flight mechanics.  相似文献   

8.
We construct, analyze, and implement SSOR‐like preconditioners for non‐Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew‐Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR‐like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR‐like preconditioners, are efficient solvers for these classes of non‐Hermitian positive definite linear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
K. Schlacher  A. Kugi 《PAMM》2002,1(1):97-98
Many design methods for non‐linear control problems require the measurement of the whole state of the plant. This contribution deals with a refinement of the well established exact input‐to‐output linearization such that the control laws depend only on a predefined set of measurements. More precisely, we derive the determining equations for all static control laws, such that the input‐to‐output map from the new input to the new output is linear and such that the constraints concerning the measurements are met.  相似文献   

10.
In this article, a decoupling scheme based on two‐grid finite element for the mixed Stokes‐Darcy problem with the Beavers‐Joseph interface condition is proposed and investigated. With a restriction of a physical parameter α, we derive the numerical stability and error estimates for the scheme. Numerical experiments indicate that such two‐grid based decoupling finite element schemes are feasible and efficient. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1066–1082, 2014  相似文献   

11.
Linear control systems modeling passive integrated circuits are examined. A new algebraic method of spectral reduction equipped with efficient tools for preserving passivity is proposed and justified. For RC networks (circuits), this method is similar to and can be regarded as an extension of the well-known PACT method, which is based on congruence transforms. Up to now, such an extension seemed to be impossible, and different techniques were used for the reduction of RCL and RCLM networks. Some numerical results are presented.  相似文献   

12.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

13.
Michael Wenzel 《PAMM》2004,4(1):382-383
A hierarchical model for dimensional adaptivity, using mixed beam‐shell structures, is presented. Thin‐walled beam structures are often calculated on the base of beam theories. Parts of the global structure, like framework corners, are usually analyzed with shell elements in a separate model. To minimize the modeling and calculation expense, a transition element to couple beam and shell structures is used. A dimensional adaptiv algorithm is introduced to automate this the procedure of modeling and calculation. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Recently, there has been much interest in the solution of differential equations on surfaces and manifolds, driven by many applications whose dynamics take place on such domains. Although increasingly powerful algorithms have been developed in this field, many straightforward questions remain, particularly in the area of coupling advanced discretizations with efficient linear solvers. In this paper, we develop a structured refinement algorithm for octahedral triangulations of the surface of the sphere. We explain the composite‐grid finite‐element discretization of the Laplace–Beltrami operator on such triangulations and extend the fast adaptive composite‐grid scheme to provide an efficient solution of the resulting linear system. Supporting numerical examples are presented, including the recovery of second‐order accuracy in the case of a nonsmooth solution.  相似文献   

15.
Partial differential equation (PDE)–constrained optimization problems with control or state constraints are challenging from an analytical and numerical perspective. The combination of these constraints with a sparsity‐promoting L1 term within the objective function requires sophisticated optimization methods. We propose the use of an interior‐point scheme applied to a smoothed reformulation of the discretized problem and illustrate that such a scheme exhibits robust performance with respect to parameter changes. To increase the potency of this method, we introduce fast and efficient preconditioners that enable us to solve problems from a number of PDE applications in low iteration numbers and CPU times, even when the parameters involved are altered dramatically.  相似文献   

16.
Various alignment problems arising in cryo‐electron microscopy, community detection, time synchronization, computer vision, and other fields fall into a common framework of synchronization problems over compact groups such as ℤ/L, U(1), or SO(3). The goal in such problems is to estimate an unknown vector of group elements given noisy relative observations. We present an efficient iterative algorithm to solve a large class of these problems, allowing for any compact group, with measurements on multiple “frequency channels” (Fourier modes, or more generally, irreducible representations of the group). Our algorithm is a highly efficient iterative method following the blueprint of approximate message passing (AMP), which has recently arisen as a central technique for inference problems such as structured low‐rank estimation and compressed sensing. We augment the standard ideas of AMP with ideas from representation theory so that the algorithm can work with distributions over general compact groups. Using standard but nonrigorous methods from statistical physics, we analyze the behavior of our algorithm on a Gaussian noise model, identifying phases where we believe the problem is easy, (computationally) hard, and (statistically) impossible. In particular, such evidence predicts that our algorithm is information‐theoretically optimal in many cases, and that the remaining cases exhibit statistical‐to‐computational gaps. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
Andrei Reztsov 《Complexity》2016,21(5):328-330
Self‐organising traffic lights (SOTL) are considered a promising instrument for the development of more efficient adaptive traffic control systems. In this paper, we explain why this technology should be scrutinised and carefully reviewed. Research projects based on SOTL currently under way should be reviewed too. © 2015 Wiley Periodicals, Inc. Complexity 21: 328–330, 2016  相似文献   

18.
The operation of a stand‐alone photovoltaic (PV) system ultimately aims for the optimization of its energy storage. We present a mathematical model for cost‐effective control of a stand‐alone system based on a PV panel equipped with an angle adjustment device. The model is based on viscosity solutions to partial differential equations, which serve as a new and mathematically rigorous tool for modeling, analyzing, and controlling PV systems. We formulate a stochastic optimal switching problem of the panel angle, which is here a binary variable to be dynamically controlled under stochastic weather condition. The stochasticity comes from cloud cover dynamics, which is modeled with a nonlinear stochastic differential equation. In finding the optimal control policy of the panel angle, switching the angle is subject to impulsive cost and reduces to solving a system of Hamilton‐Jacobi‐Bellman quasi‐variational inequalities (HJBQVIs). We show that the stochastic differential equation is well posed and that the HJBQVIs admit a unique viscosity solution. In addition, a finite‐difference scheme is proposed for the numerical discretization of HJBQVIs. A demonstrative computational example of the HJBQVIs, with emphasis on a stand‐alone experimental system, is finally presented with practical implications for its cost‐effective operation.  相似文献   

19.
This article deals with the problem of control of canonical non‐integer‐order dynamical systems. We design a simple dynamical fractional‐order integral sliding manifold with desired stability and convergence properties. The main feature of the proposed dynamical sliding surface is transferring the sign function in the control input to the first derivative of the control signal. Therefore, the resulted control input is smooth and without any discontinuity. So, the harmful chattering, which is an inherent characteristic of the traditional sliding modes, is avoided. We use the fractional Lyapunov stability theory to derive a sliding control law to force the system trajectories to reach the sliding manifold and remain on it forever. A nonsmooth positive definite function is applied to prove the existence of the sliding motion in a given finite time. Some computer simulations are presented to show the efficient performance of the proposed chattering‐free fractional‐order sliding mode controller. © 2015 Wiley Periodicals, Inc. Complexity 21: 224–233, 2016  相似文献   

20.
Motivated by a computer model calibration problem from the oil and gas industry, involving the design of a honeycomb seal, we develop a new Bayesian methodology to cope with limitations in the canonical apparatus stemming from several factors. We propose a new strategy of on‐site design and surrogate modeling for a computer simulator acting on a high‐dimensional input space that, although relatively speedy, is prone to numerical instabilities, missing data, and nonstationary dynamics. Our aim is to strike a balance between data‐faithful modeling and computational tractability in a calibration framework—tailoring the computer model to a limited field experiment. Situating our on‐site surrogates within the canonical calibration apparatus requires updates to that framework. We describe a novel yet intuitive Bayesian setup that carefully decomposes otherwise prohibitively large matrices by exploiting the sparse blockwise structure. Empirical illustrations demonstrate that this approach performs well on toy data and our motivating honeycomb example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号