首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
推导出了CuHn(n=0、+1、+2)的基态电子状态及其离解极限.基于SDD和6-311G**基组,用B3PW91方法计算了他们的平衡几何、电子状态,在此基础上分别计算了CuH,CuH+1的Murrell-Sorbie解析势能函数和CuH+2的解析势能函数及其对应的力常数、光谱参数.CuHn(n=+1,+2)离子的垂直电离势为:I+=-965.00eV,I++=-944.70eV.计算表明CuH+、CuH2+的势能曲线均具有对应于稳定平衡结构的极小点,说明CuH+、CuH2+可稳定存在.  相似文献   

2.
Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.  相似文献   

3.
We present the first results for the K13 form factor from simulations with 2+1 flavors of dynamical domain wall quarks. Combining our result, namely, f+(0)=0.964(5) with the latest experimental results for Kl3 decays leads to |V us|=0.2249(14), reducing the uncertaintity in this important parameter. For the O(p6) term in the chiral expansion we obtain Delta f=-0.013(5).  相似文献   

4.
The study of arterial mechanics concerns functional characteristics depending on wall elasticity and flow profile. Wall elasticity can be investigated through the estimation of parameters like the arterial distensibility, which is of high clinical interest because of its known correlation not only with the advanced atherosclerotic disease, but also with aging and major risk factors for cardiovascular disease. The flow velocity profile is also clinically relevant, because it modulates endothelial function and can be responsible for the development and distribution of atherosclerotic plaques. A clinically relevant variable extracted from the blood velocity profile is the wall shear rate (WSR), which represents the spatial velocity gradient near the vessel wall. This paper describes an integrated ultrasound system, capable of detecting both the velocity profile and the wall movements in human arteries. It basically consists of a PC add-on board including a single high-speed digital signal processor. This is dedicated to the analysis of echo-signals backscattered from 128 range cells located along the axis of the interrogating ultrasound (US) beam. Echoes generated from the walls (characterized by high amplitudes and low Doppler frequencies) and from red blood cells (characterized by low amplitudes and relatively high Doppler frequencies) are independently processed in real-time. Wall velocity is detected through the autocorrelation algorithm, while blood velocity is investigated through a complete spectral analysis of all signals backscattered by erythrocytes and WSR is extracted from the estimated velocity profile. Preliminary applications of the new system, including the simultaneous analysis of blood flow and arterial wall movement in healthy volunteers and in a diseased patient, are discussed, and first results are presented.  相似文献   

5.
The particle dynamics and shear forces of granular matter in a Couette geometry are determined experimentally. The normalized tangential velocity V(y) declines strongly with distance y from the moving wall, independent of the shear rate and of the shear dynamics. Local rms velocity fluctuations deltaV(y) scale with the local velocity gradient to the power 0.4+/-0.05. These results agree with a locally Newtonian, continuum model, where the granular medium is assumed to behave as a liquid with a local temperature [deltaV(y)](2) and density dependent viscosity.  相似文献   

6.
Fully developed turbulent pipe flows of power-law fluids are studied by means of direct numerical simulation. Two series of calculations at generalised Reynolds numbers of approximately 10000 and 20000 were carried out. Five different power law indexes n from 0.4 to 1 were considered. The distributions of components of Reynolds stress tensor, averaged viscosity, viscosity fluctuations, and measures of turbulent anisotropy are presented. The friction coefficient predicted by the simulations is in a good agreement with the correlation obtained from experiment. Flows of power-law fluids exhibit stronger anisotropy of the Reynolds stress tensor compared with the flow of Newtonian fluid. The turbulence anisotropy becomes more significant with the decreasing flow index n. An increase in apparent viscosity away from the wall leads to the damping of the wall-normal velocity pulsations. The suppression of the turbulent energy redistribution between the Reynolds stress tensor components observed in the simulations leads to a strong domination of the axial velocity pulsations. The damping of wall-normal velocity pulsations leads to a reduction of the fluctuating transport of momentum from the core toward the wall, which explains the effect of drag reduction.  相似文献   

7.
用小波理论研究湍流边界层湍动能的特征   总被引:1,自引:1,他引:1  
在三个雷诺数下,用热线风速仪测量了光滑壁面湍流边界层的脉动速度信号,利用离散正交小波理论分解该测试信号,得到具有最大湍动能的分量及其发生频率,并得到了这两个参数沿y+的分布曲线.分析表明,在试验雷诺数下,最大湍动能的无量纲尺度沿y+分布雷诺相似,其发生频率沿y+基本是一常数,且湍动能主要集中在几个有限的尺度分量上.  相似文献   

8.
9.
The low-velocity limit of the classical Bohr stopping model is investigated by applying non-perturbative methods. For the repulsive Coulomb interaction between a heavy projectile and a harmonically bound electron, the stopping cross-section S+(v) is found to scale as v5/3 in the limit of v 0, where v is the projectile velocity. This scaling is obtained by establishing a corresponding scaling law for the energy transfer T+(v,b) in a single collision with an impact parameter b, namely, that T+/v1/3 is a function of a scaled variable b/v2/3. For the opposite case of the Coulomb attraction, direct numerical calculations reveal that the energy transfer T-(v,b) exhibits sharp resonances along the b axes when v becomes sufficiently small. The latter results in a characteristic non-regular behaviour of S-(v) near maximum. Suitable fitting formulae are proposed for the corresponding stopping numbers L±(v).  相似文献   

10.
通过Li^+/La^3+同比例共掺杂策略,在氢气气氛下烧结制备了Li0.06La0.06Ba0.84Si2O5∶4%Eu^2+(LLBSO∶Eu2+)高效绿色发光荧光粉。相比于未掺杂样品Ba0.96Si2O5∶4%Eu2+(BSO∶Eu^2+),Li^+/La^3+共掺有助于单一相LLBSO∶Eu^2+荧光粉的合成,能有效降低烧结的温度和缩短合成时间。我们发现该策略节约荧光粉合成成本的同时,也可以显著提高其光学性能。相关测试表明,Li+/La3+共掺杂样品平均颗粒尺寸主要分布在1.1~2.7μm,颗粒团聚现象不明显,符合涂覆LED芯片要求。该样品可以有效地被365 nm近紫外LED芯片激发,产生位于502 nm的强的宽带绿光发射,其归属于Eu2+的5d-4f跃迁,发光强度是未掺杂样品的168%。此外,LLBSO∶Eu^2+荧光粉在150℃时发光强度仍保持在室温时的98%左右,具有良好的热稳定性。该样品CIE坐标位于绿光区(0.217,0.410)。通过绿粉/红粉和绿粉/红粉/蓝粉混粉策略,制得了色温为2918~4037 K的白色发光LED,其显色指数(Ra)均大于85,具有良好的热稳定性。实验结果表明,Li^+/La^3+共掺单一相的BSO∶Eu^2+绿色发光荧光粉是制备近紫外激发白光发射LED的优良候选荧光粉材料。  相似文献   

11.
用一束波长为360.55nm的激光,通过N2O分子的(3+1)共振多光子电离(REMPI)过程制备纯净且布居完全处于X2Π(000)态的母体离子N2O+,然后用另一束波长在275—328nm范围内的可调谐激光将制备的N2O+离子激发至预解离电子态A2Σ+.实验发现,由于解离碎片NO+所具有的一定的反冲速度,其TOF质谱峰明显比N2O+母体宽.通过分析NO+碎片TOF质谱峰形状,得到了解离产物的总平均平动能〈ET〉;通过考察〈ET〉随光解能量的变化,发现光解能量在32000cm-1附近约250cm-1的变化 关键词: N2O+离子A2Σ+态 TOF质谱峰 预解离机理  相似文献   

12.
许武  Peterson J R 《发光学报》2001,22(4):367-372
在室温下测量了在空气中灼烧掺杂Dy2O3的SrB3O7的发射光谱。观测到了由Dy^3 到Dy^2 氧化态的变化。经优化,当在空气中灼烧温度为650℃时为产生Dy^2 的最佳温度。在457.9nm的激发下测出了两个峰位分别位于550和660nm的宽发射带。我们认为这两个宽发射带是由Dy^2 离子由5d态向4f基态能级(^5I8)跃迁产生的。讨论了几个有益于在这种基质中还原Dy^3 离子的条件。为了实现Dy^3 离子的还原,我们还在Ar/H2(4%)气氛中制备了Dy2O3掺杂的SrB4O7比较了这种样品和在空气中所制备的样品的光学特性。本文还对标专SrB4O7还原性和稳定性的g-因子由Tm^2 的[E0(Tm^3 /Tm^2 =-2.3V]推导出Dy^2 的[E0(Dy^3 /Dy^2 )=-2.6V],但对这种还原过程的局限性尚未确定。  相似文献   

13.
用高温固相反应法制备了稀土离子Ce3+、Gd3+双掺杂的YVO4发光材料,通过X射线衍射(XRD)、扫描电镜(SEM)、激发以及发射光谱等测试手段对YVO4:Ce3+(Gd3+)荧光粉的制备条件、发光性能以及表面形貌进行了研究。XRD结果表明,在1100℃恒温5 h可得到Ce3+(Gd3+):YVO4纯相。SEM结果显示颗粒基本为球形,粒径约为300~500 nm。激发光谱测试表明,Ce3+(Gd3+):YVO4荧光粉在近紫外光区(232 nm)和蓝光区(424 nm)可以被有效地激发,用424 nm的蓝光激发样品时,Ce3+(Gd3+):YVO4荧光粉在611 nm和659 nm处的发光强度最大;因此,这种荧光粉可以作为组合型白光LED的红色发射荧光粉的候选材料。  相似文献   

14.
Dy^3^+在Ca3La3(BO3)5中的光致发光   总被引:6,自引:0,他引:6  
研究了Ca3La3(BO3)5中Dy^3^+的光致发光,Ce^3^+或Bi^3^+对Dy^3^+发光的敏化作用,Dy^3^+自身浓度猝灭和CE^3^+→Dy^3^+能量传递的机理。  相似文献   

15.
The lifetime of the 2_+(1) state in 16C has been measured with the recoil distance method using the 9Be(9Be,2p) fusion-evaporation reaction at a beam energy of 40 MeV. The mean lifetime was measured to be 11.7(20) ps corresponding to a B(E2;2_+(1)-->0+) value of 4.15(73)e_2 fm_4 [1.73(30) W.u.], consistent with other even-even closed shell nuclei. Our result does not support an interpretation for "decoupled" valence neutrons.  相似文献   

16.
17.
Evolution equations for propagation of both unipolar and bipolar acoustic pulses are derived by using hysteretic stress-strain relationships. Hysteretic stress-strain loops that incorporate quadratic nonlinearity are derived by applying the model of Preisach-Mayergoyz space for the characterization of structural elements in a micro-inhomogeneous material. Exact solutions of the nonlinear evolution equations predict broadening in time and reduction in amplitude of a unipolar finite-amplitude acoustic pulse. In contrast with some earlier theoretical predictions, the transformation of the pulse shape predicted here satisfies the law of "momentum" conservation (the "equality of areas" law in nonlinear acoustics of elastic materials). A bipolar pulse of nonzero momentum first transforms during its propagation into a unipolar pulse of the same duration. This process occurs in accordance with the "momentum" conservation law and without formation of shock fronts in the particle velocity profile.  相似文献   

18.
The effect of an externally imposed perturbation on an unstable or weakly stable shear flow is investigated, with a focus on the role of Lagrangian chaos in the bifurcations that occur. The external perturbation is at rest in the laboratory frame and can form a chain of resonances or cat's eyes where the initial velocity v(x0)(y) vanishes. If in addition the shear profile is unstable or weakly stable to a Kelvin-Helmholtz instability, for a certain amplitude of the external perturbation there can be an unlocking bifurcation to a nonlinear wave resonant around a different value of y, with nonzero phase velocity. The interaction of the propagating nonlinear wave with the external perturbation leads to Lagrangian chaos. We discuss results based on numerical simulations for different amplitudes of the external perturbation. The response to the external perturbation is strong, apparently because of non-normality of the linear operator, and the unlocking bifurcation is hysteretic. The results indicate that the observed Lagrangian chaos is responsible for a second bifurcation occurring at larger external perturbation, locking the wave to the wall. This bifurcation is nonhysteretic. The mechanism by which the chaos leads to locking in this second bifurcation is by means of chaotic advective transport of momentum from one chain of resonances to the other (Reynolds stress) and momentum transport to the vicinity of the wall via chaotic scattering. These results suggest that locking of waves in rotating tank experiments in the presence of two unstable modes is due to a similar process. (c) 2002 American Institute of Physics.  相似文献   

19.
针对流体在纳米通道的小尺度效应,采用分子动力学方法模拟了传热效应以及流体流动行为,研究在壁面温度影响下,不同润湿性壁面上方气层生成状态以及流体流动时气层的稳定特性和相应的减阻性能.结果表明:当壁面为纯疏水壁面时,不能形成气层;疏水基底+亲水组合壁面形成不规则气层;纯亲水壁面和亲水基底+疏水组合壁面能形成规则气层.当流体流动时,疏水基底+亲水组合壁面气层消失,而纯亲水壁面和亲水基底+疏水组合壁面气层较为稳定.纯疏水壁面主流区域速度较大,而纯亲水壁面主流区域最低.对于壁面滑移速度,存在气层的壁面滑移速度与纯疏水表面相对接近,甚至稍优于纯属疏水表面,而疏水基底+亲水组合壁面滑移速度最小.  相似文献   

20.
Consideration of the vertical sound velocity profile is highly important for solving problems of sound propagation in waveguides and scattering problems. A pulsed echo signal reflected from a spherical scatterer in a waveguide is modeled for the case of a waveguide characterized by sound velocity increasing with depth. The simplest model of the medium is considered in which the scatterer, the source, and the receiver are positioned in a layer with constant sound velocity. Below this layer, the sound velocity increases with depth so that the square of refractive index varies according to linear law. The scattering coefficients for the sphere are calculated using the normal wave method. The number of normal waves forming the echo signal is determined by the preset directionality of the source. Modeling is performed in a frequency band of 70?90 kHz for distances between the scatterer and the transmitter-receiver within 500?1000 m. The transmitted signal has the form of a pulse with cosine envelope and central frequency of 80 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号