首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The absence of self-averaging in mesoscopic systems is a consequence of long-range intensity correlations. Microwave measurements suggest, and diagrammatic calculations confirm, that the correlation function of the normalized intensity with displacement of the source and detector, Delta R and Delta r, respectively, can be expressed as the sum of three terms, with distinctive spatial dependences. Each term involves only the sum or the product of the square of the field correlation function, F identical with F(2)(E). The leading-order term is the product, F(Delta R)F(Delta r); the next term is proportional to the sum, F(Delta R)+F(Delta r); the third term is proportional to F(Delta R)F(Delta r)+[F(Delta R)+F(Delta r)]+1.  相似文献   

2.
Recent data allow a new parametrization of the neutron charge form factor GnE. A parameter-free quark-model relation between GnE and the N-->Delta quadrupole form factor G(N-->Delta)C2 is used to predict G(N-->Delta)C2 from GnE data. In particular, is related to N-->Delta quadrupole moment Q(N-->Delta), while connects to the N-->Delta quadrupole transition radius Delta)>. From the latter we derive an experimental value for the charge radius of the light constituent quarks r(gamma(q)) = 0.8 fm. Finally, the C2/M1 ratio in pion electroproduction is predicted from the elastic neutron form factor data.  相似文献   

3.
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U > Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.  相似文献   

4.
Drought tolerance is an important breeding objective in dry and semi-dry conditions. Carbon isotope discrimination (Delta) is a tool that may be used to improve water-use efficiency (WUE) as an indirect selection criterion. The study investigated the variability for Delta in improved F7 lines and their parents (three cultivars and two mutant lines), which were sampled randomly from an F6 nursery performing well under semi-dry conditions. In total, 40 entries were grown in sand culture, arranged in three-replicated randomized complete block designs in two sets of experiments in Antalya, Turkey. There were statistically significant differences (p<0.01) among genotypes in both sets of experiments for Delta, and Delta values range from 20.14 to 21.86. Low coefficient of variation (C.V.) values, i.e. 2 and 1.65 %, for both data sets revealed efficient control of experimental error for Delta and indicated little effect of environment. Consequently, broad-sense heritability estimates for Delta were 0.63 and 0.74. As Delta showed a considerably high heritability and consistency over the two sets of experiments and low C.V. values, it was concluded that this trait could be used in breeding programmes aimed at developing drought tolerance lines. The early heading mutant, M-K-88, and the cultivar selected from land race, Tokak 157-37, showed lowest Delta values, indicating that they had the best water-use efficiency. Low Delta values of these two genotypes were inheritable.  相似文献   

5.
It is proposed that the temperature dependence of the superconducting gap Delta(T) in high-T(c) cuprates can be predicted just from the knowledge of Delta(0) and the critical temperature T(c), and, in particular, Delta(0)/T(c)>4 implies that Delta(T(c)) not equal 0, while Delta(0)/T(c)相似文献   

6.
This study compared two methods, corrected (separation of T(1) and T(2)* effects) and uncorrected, in order to determine the suitability of the perfusion and permeability measures through Delta R(2)* and Delta R(1) analyses. A dynamic susceptibility contrast dual gradient echo (DSC-DGE) was used to image the fixed phantoms and flow phantoms (Sephadex perfusion phantoms and dialyzer phantom for the permeability measurements). The results confirmed that the corrected relaxation rate was linearly proportional to gadolinium-diethyltriamine pentaacetic acid (Gd-DTPA) concentration, whereas the uncorrected relaxation rate did not in the fixed phantom and simulation experiments. For the perfusion measurements, it was found that the correction process was necessary not only for the Delta R(1) time curve but also for the Delta R(2)* time curve analyses. Perfusion could not be measured without correcting the Delta R(2)* time curve. The water volume, which was expressed as the perfusion amount, was found to be closer to the theoretical value when using the corrected Delta R(1) curve in the calculations. However, this may occur in the low concentration of Gd-DTPA in tissue used in this study. For the permeability measurements based on the two-compartment model, the permeability factor (k(ev); e = extravascular, v = vascular) from the outside to the inside of the hollow fibers was greater in the corrected Delta R(1) method than in the uncorrected Delta R(1) method. The differences between the corrected and the uncorrected Delta R(1) values were confirmed by the simulation experiments. In conclusion, this study proposes that the correction for the relaxation rates, Delta R(2)* and Delta R(1), is indispensable in making accurate perfusion and permeability measurements, and that DSC-DGE is a useful method for obtaining information on perfusion and permeability, simultaneously.  相似文献   

7.
We have fabricated longitudinal nanoconstrictions in the charge-density wave conductor (CDW) NbSe3 using a focused ion beam and using a mechanically controlled break-junction technique. Conductance peaks are observed below the TP1=145 K and TP2=59 K CDW transitions, which correspond closely with previous values of the full CDW gaps 2Delta1 and 2Delta2 obtained from photoemission. These results can be explained by assuming CDW-CDW tunneling in the presence of an energy gap corrugation epsilon2 comparable to Delta2, which eliminates expected peaks at +/-|Delta1+Delta2|. The nanometer length scales our experiments imply indicate that an alternative explanation based on tunneling through back-to-back CDW-normal-conductor junctions is unlikely.  相似文献   

8.
NMR Q-space microscopy of concentrated oil-in-water emulsions   总被引:1,自引:0,他引:1  
The pulsed field gradient stimulated echo technique with selective excitation is used to probe the diffusion of water in the continuous phase of concentrated oil-in-water emulsions. The dependence of the echo amplitude, S(q,Delta), on wavevector, q, and diffusion time, Delta, shows that the water diffusion propagator is sensitive to emulsion microstructure. This is analyzed using a multiple exponential time series expansion of S(q,Delta) in Delta, with wavevector dependent expansion coefficients. These coefficients are compared with predictions from several theoretical models for three types of stable emulsion, each differing in microstructure. The relationship between the nuclear magnetic resonance q-space measurements and bulk rheology for all three types of emulsion is also explored.  相似文献   

9.
We determine the initial temperature dependence of the exchange splitting Delta(T) in the weak itinerant ferromagnet ZrZn2 (T{C}=28 K) using the de Haas-van Alphen effect. There is a large decrease in Delta with temperature in the range 0.5< or =T< or =4 K. A comparison of Delta(T) with the magnetization M(T) shows that the dominant process responsible for the reduction of M is not the thermal excitation of spin waves, but a repopulation of the spin- upward arrow and spin- downward arrow Fermi surfaces. This contrasts with the behavior in Fe where there is no observable change in Delta and the thermal excitation of spin waves is the only observable spin-flipping process at low temperatures.  相似文献   

10.
In this paper the non-commutative quantum mechanics (NCQM) with the generalized uncertainty relations \({\Delta } x_{1} {\Delta } x_{2} \ge \frac {\theta }{2}, {\Delta } p_{1} {\Delta } p_{2} \ge \frac {\bar {\theta }}{2}, {\Delta } x_{i} {\Delta } p_{i} \ge \frac {\hbar _{eff}}{2}\) is discussed. Four each uncertainty relation, wave functions saturating each uncertainty relation are explicitly constructed. The unitary operators relating the non-commutative position and momentum operators to the commutative position and momentum operators are also investigated. We also discuss the uncertainty relation related to the harmonic oscillator.  相似文献   

11.
We analyze a sequence of short transient sound waves, called "crackles," which are associated with explosive openings of airways during lung inflation. The distribution of time intervals between consecutive crackles Delta(t) shows two regimes of power law behavior. We develop an avalanche model which fits the data over five decades of Delta(t). We find that the regime for large Delta(t) is related to the dynamics of distinct avalanches in a Cayley tree, and the regime for small Delta(t) is determined by the dynamics of crackle propagation within a single avalanche. We also obtain a mean-field solution of the model which provides information about lung inflation.  相似文献   

12.
The zero-temperature limit of the energy gap, Delta(P,T-->0), of superfluid 3He-B has been measured at T/T(c) less, similar0.25, near 0.1 and 4.8 bars, and in zero magnetic field. The energy gap was determined from the 2Delta pair-breaking edge of an acoustic signal obtained by novel, pulsed Fourier-Transform ultrasonic spectroscopy. Our results are independent of the temperature scale and the theoretical model of the gap. The values for Delta(P,T-->0) are lower than predicted by the weak-coupling-plus theory, and the Delta(P approximately 0.1 bars,T-->0) values are lower than predicted by BCS theory. The data indicate that Delta(P,T-->0) of superfluid 3He-B is not well modeled at the lowest pressures.  相似文献   

13.
The magnon energy band in a four-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that three modulated energy gaps exist in the magnon energy band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the three energy gaps. The magnon energy gaps of the four-layer ferromagnetic superlattice are different from those of the three-layer one. For the four-layer ferromagnetic superlattice, the disappearance of the magnon energy gaps △ω12, △ω23 and △ω34 all correlates with the symmetry of this system. The zero energy gap △ω23 correlates with the symmetry of interlayer exchange couplings, while the vanishing of the magnon energy gaps △ω12 and △ω34 corresponds to a translational symmetry of x-direction in the lattice. When the parameters of the system deviate from these symmetries, the three energy gaps will increase.  相似文献   

14.
Deuterium NMR relaxation experiments, low temperature deuterium NMR lineshape analysis, and FTIR spectra are consistent with a new model for solid state jump dynamics of water in (2)H(2)O-synthesized kanemite and (2)H(2)O-hydrated Na(+)-Zeolite A. Exchange occurs between two populations of water: one in which water molecules are directly coordinated to sodium ions and experience C(2) symmetry jumps of their OH bonds, and a population of interstitial water molecules outside the sodium ion coordination sphere that experience tetrahedral jumps of their OH bonds. For both samples the C(2) jump rate is much faster than the tetrahedral jump rate. (2)H NMR relaxation experiments match well with the fast exchange regime of the model over a wide range of temperatures, including room temperature and above. For hydrated Zeolite A, the kinetic activation parameters for the tetrahedral and C(2) symmetry jumps are Delta H tet++=+17 kJ/mol, Delta S tet++=-109 J/(mol K), Delta H C2++=+19 kJ/mol, and Delta S C2++=-20 J/(mol K). For kanemite, Delta H tet++ =+23 kJ/mol, Delta S tet++=-69 J/(mol K), Delta H C2++ =+23 kJ/mol, and Delta S C2++ =-11 J/(mol K).  相似文献   

15.
16.
This paper addresses the question of the rate of synchronization of two identical systems as a function of the inserting time interval Delta t between inserted variables of the driving system in the role of the same variables of the driven system in a simplified Hamiltonian system and its application to a simplified geophysical model. We start by analyzing the synchronization in a simplified two-degree Hamiltonian system. The synchronization rate turns out to be a decreasing function of the inserting time interval Delta t up to a certain limit Delta t(o) where the process reverses and the synchronization rate becomes slower as the inserting frequency decreases. The key point of the analysis uses a second-order Taylor expansion of the system resolvent which indicates that synchronization rate is basically of order O(Delta t(2)) for small Delta t. The study is then extended to include a simplified geophysical system. A nonlinear one-dimensional shallow-water model on a periodic domain meant to represent a latitudinal circle around 45 degrees N is used. It is found that when the zonal wind is inserted, the maximum synchronization rate is obtained when the inserting time interval is approximately 4 h. When the meridional wind is inserted, it is obtained at slightly less than 4 h. It is shown, in particular, that the synchronization rate depends on the latitude (or the Coriolis parameter). A low-order simplified dynamical system derived from the one-dimensional shallow-water model is used to show that this optimum time interval Delta t(o) when the zonal wind and the geopotential, for example, are inserted varies approximately as square root of [2]/2 Omega sin phi to accuracy O(Delta t(3)). Analyses performed with a linear version of the shallow-water model reveal that this latter can be used to explain the observed convergence behavior in the nonlinear model. The only point is the choice of the stationary state for linearization purposes. It is then suggested that in more complicated geophysical systems, the closest stationary state to the climatology can be used to estimate the crossover point Delta t(o).  相似文献   

17.
We report a quantum interference and imaging experiment which allows identifying the entanglement in momentum and position variables of a two-photon system. The measurements show indeed that the uncertainties in the sum of momenta and in the difference of positions of the entangled two-photon satisfy both EPR inequalities Delta(k(1)+k(2))相似文献   

18.
We calculate the effects on the elastic electron-proton scattering cross section of the two-photon exchange contribution with an intermediate Delta resonance. The Delta two-photon exchange contribution is found to be smaller in magnitude than the previously evaluated nucleon contribution, with an opposite sign at backward scattering angles. The sum of the nucleon and Delta two-photon exchange corrections has an angular dependence compatible with both the polarization-transfer and the Rosenbluth methods of measuring the nucleon electromagnetic form factors.  相似文献   

19.
We consider the quantum mechanics on the noncommutative plane with the generalized uncertainty relations \({\Delta } x_{1} {\Delta } x_{2} \ge \frac {\theta }{2}, {\Delta } p_{1} {\Delta } p_{2} \ge \frac {\bar {\theta }}{2}, {\Delta } x_{i} {\Delta } p_{i} \ge \frac {\hbar }{2}, {\Delta } x_{1} {\Delta } p_{2} \ge \frac {\eta }{2}\). We show that the model has two essentially different phases which is determined by \(\kappa = 1 + \frac {1}{\hbar ^{2} } (\eta ^{2} - \theta \bar {\theta })\). We construct a operator \(\hat {\pi }_{i}\) commuting with \(\hat {x}_{j} \) and discuss the harmonic oscillator model in two dimensional non-commutative space for three case κ > 0, κ = 0, κ < 0. Finally, we discuss the thermodynamics of a particle whose hamiltonian is related to the harmonic oscillator model in two dimensional non-commutative space.  相似文献   

20.
We investigate the Kondo effect in a quantum dot with almost degenerate spin-singlet and triplet states for an even number of electrons. We show that the Kondo temperature as a function of the energy difference between the states Delta reaches its maximum around Delta = 0 and decreases with increasing Delta. The Kondo effect is thus enhanced by competition between singlet and triplet states. Our results explain recent experimental findings. We evaluate the linear conductance in the perturbative regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号