首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张天宝  俞玄平  陈阿海 《物理学报》2015,64(15):156402-156402
本文通过数值求解有限温度下一维均匀费米Gaudin-Yang模型的热力学Bethe-ansatz方程, 研究了此模型的基本性质,得到了在给定的温度或给定的相互作用下, 化学势、相互作用、粒子密度和熵的相互变化图像. 对结果分析发现, 在给定温度和相互作用下, 熵随着化学势的变化有一个量子临界区域.  相似文献   

2.
Hidden duality and its associated instabilities of the spinless Luttinger liquid on lattice are reported. The local quantum fluctuations due to the general multi-particle umklapp and other processes and the long-distance chiral modes compete and as a result produce a hierarchy of exotic charge density instabilities. Explicit bosonic quantum operators for the local density fluctuations are constructed and are used to make identification of the Luttinger liquid with the classical 2D Coulomb gas with -term and with the rich hidden duality.  相似文献   

3.
Many quantum mechanical problems (such as dissipative phase fluctuations in metallic and superconducting nanocircuits or impurity scattering in Luttinger liquids) involve a continuum of bosonic modes with a marginal spectral density diverging as the inverse of energy. We construct a numerical renormalization group in this singular case, with a manageable violation of scale separation at high energy, capturing reliably the low energy physics. The method is demonstrated by a nonperturbative solution over several energy decades for the dynamical conductance of a Luttinger liquid with a single static defect.  相似文献   

4.
We calculate the counting statistics of electron transfer through an open quantum dot with charging interaction. A dot that is connected to leads by two single-channel quantum point contacts in an in-plane magnetic field is described by a Luttinger liquid with impurity at the Toulouse point. We find that the fluctuations of the current through this conductor exhibit distinctive interaction effects. Fluctuations saturate at high voltages, while the mean current increases linearly with the bias voltage. All cumulants higher than the second one reach at large bias a temperature independent limit.  相似文献   

5.
The mechanisms leading to instability of the non-Fermi-liquid state of a Luttinger liquid with two-level impurities are proposed. Since exchange scattering in 1D systems is two-channel scattering in a certain range of parameters, several types of non-Fermi-liquid excitations with different quantum numbers exist in the vicinity of the Fermi level. These excitations include, first, charge density fluctuations in the Luttinger liquid and, second, many-particle excitations due to two-channel exchange interaction, which are associated with band-type as well as impurity fermion states. It is shown that mutual scattering of many-particle excitations of various types leads to the emergence of an additional Fermi-liquid singularity in the vicinity of the Fermi level. The conditions under which the Fermi-liquid state with a new energy scale (which is much smaller than the Kondo temperature) is the ground state of the system are formulated.  相似文献   

6.
We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D) ultracold bosonic gases with two spin states. By controlling the nonlinear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative phase between the two components. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique, which unveils the role of quantum fluctuations in 1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the nonequilibrium evolution of one-dimensional many-body quantum systems.  相似文献   

7.
T. Senthil 《Annals of Physics》2006,321(7):1669-1681
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-Fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transition with an eye toward understanding the non-Fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fermi surface with power law quasiparticles but with a volume not set by the usual Luttinger rule. We also discuss the possibility that the electronic structure change associated with the possible Fermi surface reconstruction may diverge at a different time/length scale from that associated with magnetic phenomena.  相似文献   

8.
It is shown theoretically that the Luttinger liquid can exist in quasi-one-dimensional conductors in the presence of impurities in a form of a collection of bounded Luttinger liquids. The conclusion is based on the observation by Kane and Fisher that a local impurity potential in Luttinger liquid acts, at low energies, as an infinite barrier. This leads to a discrete spectrum of collective charge and spin density fluctuations, so that interchain hopping can be considered as a small parameter at temperatures below the minimum excitation energy of the collective modes. The results are compared with recent experimental observation of a Luttinger-liquid-like behavior in thin NbSe3 and TaS3 wires.  相似文献   

9.
We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a nonchiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the noninteracting edge states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling I-V with a nonintegral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state.  相似文献   

10.
Thermodynamic and transport properties of a two-dimensional circular quantum dot are studied theoretically at zero magnetic field. In the limit of a large confining potential, where the dot spectrum exhibits a shell structure, it is argued that both spectral and transport properties should exhibit Luttinger liquid behavior. These predictions are verified by direct numerical diagonalization. The experimental implications of such Luttinger liquid characteristics are discussed.  相似文献   

11.
We study the low-temperature properties of a 4He fluid confined in nanopores, using large-scale quantum Monte Carlo simulations with realistic He-He and He-pore interactions. In the narrow-pore limit, the system can be described by the quantum hydrodynamic theory known as Luttinger liquid theory with a large Luttinger parameter, corresponding to the dominance of solid tendencies and strong susceptibility to pinning by a periodic or random potential from the pore walls. On the other hand, for wider pores, the central region appears to behave like a Luttinger liquid with a smaller Luttinger parameter, and may be protected from pinning by the wall potential, offering the possibility of experimental detection of a Luttinger liquid.  相似文献   

12.
Nonequilibrium bosonization technique is used to study current fluctuations of interacting electrons in a single-channel quantum wire representing a Luttinger liquid (LL) conductor. An exact expression for the time resolved full counting statistics of the transmitted charge is derived. It is given by the Fredholm determinant of the counting operator with a time-dependent scattering phase. The result has a form of counting statistics of noninteracting particles with fractional charges, induced by scattering off the boundaries between the LL wire and the noninteracting leads.  相似文献   

13.
We review some of the recent results on equilibration of one-dimensional quantum liquids. The low-energy properties of these systems are described by the Luttinger liquid theory, in which the excitations are bosonic quasiparticles. At low temperatures, the relaxation of the gas of excitations toward full equilibrium is exponentially slow. In electronic Luttinger liquids, these relaxation processes involve backscattering of electrons and give rise to interesting corrections to the transport properties of one-dimensional conductors. We focus on the phenomenological theory of the equilibration of a quantum liquid and obtain an expression for the relaxation rate in terms of the excitation spectrum.  相似文献   

14.
We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques, we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.  相似文献   

15.
Recently, the Majorana fermion has received great attentions due to its promising application in the fault-tolerant quantum computation. This application requires more accessible methods to detect the motion and braiding of the Majorana fermions. We use a Luttinger liquid ring to achieve this goal, where the ring geometry is nontrivial in the sense that it leads to fermion-parity-dependent topological excitations. First, we briefly review the essential physics of the Luttinger liquid and the Majorana fermion, in order to give an introduction of the general framework used in the following main work. Then, we theoretically investigated the DC Josephson effect between two topological superconductors via a Luttinger liquid ring. A low-energy effective Hamiltonian is derived to show the existence of the fractional Josephson current. Also, we find that the amplitude of the Josephson current, which is determined by the correlation function of Luttinger liquid, exhibits different behaviors in terms of the parity of Luttinger liquid due to the topological excitations. Our results suggest a possible method to detect the Majorana fermions and their tunneling process.  相似文献   

16.
By using the infinite time-evolving block decimation, we study quantum fidelity and entanglemententropy in the spin-1/2 Heisenberg alternating chain under an external magnetic field .The effects of the magnetic field on the fidelity are investigated, and its relation with the quantum hase transition (QPT) is analyzed. The phase diagram of the model is given accordingly, which supports the Haldane phase, the singlet-dimer phase, the Luttinger liquid phase and the paramagnetic phase. The scaling of entanglement entropy in the gapless Luttinger liquid phase is studied, and the central charge $c=1$ is obtained. We also study the relationship between the quantum coherence, string order parameter and QPTs. Results obtained from these quantum information observations are consistent with the previous reports.  相似文献   

17.
With the surge of research in quantum information, the issue of producing entangled states has gained prominence. Here, we show that judiciously bringing together two systems of strongly interacting electrons with vastly differing ground states-the gapped BCS superconductor and the Luttinger liquid-can result in quantum entanglement. We propose three sets of measurements involving single-walled metallic carbon nanotubes which have been shown to exhibit Luttinger liquid physics, to test our claim and as nanoscience experiments of interest in and of themselves.  相似文献   

18.
The quantum transport of anyons in one space dimension is investigated. After establishing some universal features of non-equilibrium systems in contact with two heat reservoirs in a generalized Gibbs state, the abelian anyon solution of the Tomonaga–Luttinger model possessing axial-vector duality is focused upon. In this context a non-equilibrium representation of the physical observables is constructed, which is the basic tool for a systematic study of the anyon particle and heat transport. The associated Lorenz number is determined and the deviation from the standard Wiedemann–Franz law induced by the interaction and the anyon statistics is explicitly described. The quantum fluctuations generated by the electric and helical currents are investigated and the dependence of the relative noise power on the statistical parameter is established.  相似文献   

19.
Luttinger liquid theory describes one-dimensional electron systems in terms of noninteracting bosonic excitations. In this approximation thermal excitations are decoupled from the current flowing through a quantum wire, and the conductance is quantized. We show that relaxation processes not captured by the Luttinger liquid theory lead to equilibration of the excitations with the current and give rise to a temperature-dependent correction to the conductance. In long wires, the magnitude of the correction is expressed in terms of the velocities of bosonic excitations. In shorter wires it is controlled by the relaxation rate.  相似文献   

20.
We study the dynamics of an atomic quantum dot, i.e., a single atom in a tight optical trap which is coupled to a superfluid reservoir via laser transitions. Quantum interference between the collisional interactions and the laser induced coupling results in a tunable dot-bath coupling, allowing an essentially complete decoupling from the environment. Quantum dots embedded in a 1D Luttinger liquid of cold bosonic atoms realize a spin-boson model with Ohmic coupling, which exhibits a dissipative phase transition and allows us to directly measure atomic Luttinger parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号