首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王燕  董顺乐 《中国物理 B》2008,17(6):2175-2179
Molecular dynamics simulation is employed to study the structural evolution of low density amorphous ice during its compression from one atmosphere to 2.5 GPa. Calculated results show that high density amorphous ice is formed at an intermediate pressure of -1.0 GPa; the O-O-O bond angle ranges from 83° to 113°, and the O-H… O bond is bent from 112° to 160°. Very high density amorphous ice is obtained by quenching to 80 K and decompressing the ice to ambient pressure from 160 K/1.3 GPa or 160 K/1.7 GPa; and the next-nearest O-O length is found to be 0.310 nm, just 0.035 nm beyond the nearest O-O distance of 0.275 nm.  相似文献   

2.
We here report isotope substitution neutron diffraction experiments on two variants of high-density amorphous ice (HDA): its unannealed form prepared via pressure-induced amorphization of hexagonal ice at 77?K, and its expanded form prepared via decompression of very-high density amorphous ice at 140?K. The latter is about 17?K more stable thermally, so that it can be heated beyond its glass-to-liquid transition to the ultraviscous liquid form at ambient pressure. The structural origin for this large thermal difference and the possibility to reach the deeply supercooled liquid state has not yet been understood. Here we reveal that the origin for this difference is found in the intermediate range structure, beyond about 3.6 Å. The hydration shell markedly differs at about 6 Å. The local order, by contrast, including the first as well as the interstitial space between first and second shell is very similar for both. ‘eHDA’ that is decompressed to 0.20?GPa instead of 0.07?GPa is here revealed to be rather far away from well-relaxed eHDA. Instead it turns out to be roughly halfway between VHDA and eHDA – stressing the importance for decompressing VHDA to at least 0.10?GPa to make an eHDA sample of good quality.  相似文献   

3.
We present neutron powder diffraction results which give unambiguous evidence for the formation of the recently identified new crystalline ice phase [2], labeled ice XII, in completely different conditions. Ice XII is produced here by compressing hexagonal ice I(h) at T = 77, 100, 140, and 160 K up to 1.8 GPa. It can be maintained at ambient pressure in the temperature range 1.5相似文献   

4.
The transformation of low‐density amorphous (LDA) ice produced from high‐density amorphous (HDA) ice was studied up to 400 MPa as a function of temperature by in situ Raman spectroscopy and optical microscopy. Changes in these amorphous states of H2O were directly tracked without using emulsions to just above the crystallization temperature Tx. The spectra show significant changes occurring above ∼125 K. The results are compared with data reported for the relaxation behavior of HDA, to form what we call relaxed HDA, or rHDA. We find a close connection with expanded HDA (eHDA), which is reported to exist as another metastable form in this P–T region. The observation of this temperature‐induced LDA transition under pressure complements the previously observed pressure‐induced reversible transition between LDA and HDA at 120–140 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The relative permittivity and specific conductivity of water and ice are measured under isentropic compression to pressures above 300 GPa. Compression is initiated by a pulse of an ultrahigh magnetic field generated by an MK-1 magnetocumulative generator. The sample is placed in a coaxial compression chamber with an initial volume of about 40 cm3. The complex relative permittivity was measured by a fast-response reflectometer at a frequency of about 50 MHz. At the compression of water, its relative permittivity increases to ε = 350 at a pressure of 8 GPa, then drops sharply to ε = 140, and further decreases smoothly. It is shown that measurements of the relative permittivity under isentropic compression make it possible to determine interfaces between ordered and disordered phases of water and ice, as well as to reveal features associated with a change in the activation energy of defects.  相似文献   

6.
We report measurements of the phonon dispersion of ice Ih under hydrostatic pressure up to 0.5 GPa, at 140 K, using inelastic neutron scattering. They reveal a pronounced softening of various low-energy modes, in particular, those of the transverse acoustic phonon branch in the [100] direction and polarization in the hexagonal plane. We demonstrate with the aid of a lattice dynamical model that these anomalous features in the phonon dispersion are at the origin of the negative thermal expansion (NTE) coefficient in ice below 60 K. Moreover, extrapolation to higher pressures shows that the mode frequencies responsible for the NTE approach zero at approximately 2.5 GPa, which explains the known pressure-induced amorphization (PIA) in ice. These results give the first clear experimental evidence that PIA in ice is due to a lattice instability, i.e., mechanical melting.  相似文献   

7.
We present a neutron diffraction study of the transition between low-density and high-density amorphous ice (LDA and HDA, respectively) under pressure at approximately 0.3 GPa, at 130 K. All the intermediate diffraction patterns can be accurately decomposed into a linear combination of the patterns of pure LDA and HDA. This progressive transformation of one distinct phase to another, with phase coexistence at constant pressure and temperature, gives direct evidence of a classical first-order transition. In situ Raman measurements and visual observation of the reverse transition strongly support these conclusions, which have implications for models of water and the proposed second critical point in the undercooled region of liquid water.  相似文献   

8.
王燕  董顺乐 《中国物理快报》2007,24(4):1099-1102
Molecular dynamics simulation is employed to study structural evolution during compressing low density amorphous ice from one atmosphere to 2.5 GPa. The calculated results show that high density amorphous ice is formed under intermediate pressure of about 1.0GPa and O-O-O angle ranges from about 83°to 113° and O-H…O is bent from 112° to 160°The very high density amorphous ice is also formed under the pressure larger than 1.4 GPa and interstitial molecules are found in 0.3-0.4 A just beyond the nearest O-O distance. Low angle O-H… O disappears and it is believed that these hydrogen bonds are broken or re-bonded under high pressures.  相似文献   

9.
The elastic characteristics of ice up to pressures of 1.7 GPa are determined for the first time at a temperature of 77 K, along with features of their variation associated with the phase transformation of hexagonal ice Ih into high-density amorphous ice hda. The elastic instability of the ice lattice before solid-phase amorphization is experimentally confirmed. Elastic instability during a transition from one amorphous state to another amorphous state was also observed for the first time; this took place when hda ice was warmed at p=0.05 GPa from T=77 K. Zh. éksp. Teor. Fiz. 112, 200–208 (July 1997)  相似文献   

10.
I have examined the changes in in situ Raman spectra of ice in aqueous LiOH solution as a function of pressure at liquid nitrogen temperature (77 K). Here, I have shown the possibility that ice in aqueous LiOH solution transforms to a high-density amorphous like phase at around 0.9 GPa. I have mentioned that the results show differences strongly depending on the salts dissolved in the aqueous solutions.  相似文献   

11.
On compressing low-density amorphous ice (LDA) at 125 K up to 1.6 GPa, two distinct density steps accompanied by heat evolution are observable in pressure-density curves. Samples recovered to 77 K and 1 bar after the first and second steps show the x-ray diffraction pattern of high-density amorphous ice (HDA) and very HDA (VHDA), respectively. The compression of the once formed HDA takes place linearly in density up to 0.95 GPa, where nonlinear densification and HDA --> VHDA conversion is initiated. This implies a stepwise formation process LDA--> HDA --> VHDA at 125 K, which is to the best of our knowledge the first observation of a stepwise amorphous-amorphous-amorphous transformation sequence. We infer that the relation of HDA and VHDA is very similar to the relation between LDA and HDA except for a higher activation barrier between the former. We discuss the two options of thermodynamic versus kinetic origin of the phenomenon.  相似文献   

12.
 用同步辐射原位高压能散X射线衍射技术,对碳纳米管进行了结构和物性的研究,压力达50.7 GPa。在室温常压下,碳纳米管的结构和石墨的hcp结构相似,其(002)衍射线的面间距为d002=0.340 4 nm,(100)衍射线的面间距为d100=0.211 6 nm。从高压X射线衍射实验看到,当压力升到8 GPa以上时,(002)线变宽变弱,碳纳米管部分非晶化。而当压力从10 GPa或20 GPa卸压至零时,(002)线部分恢复。但当压力升高至最高压力50.7 GPa时,碳纳米管完全非晶化,而且这个非晶化相变是不可逆的。用Birch-Murnaghan方程拟合实验数据,得到体弹模量为K0=(54.3±3.2)GPa(当K′0=4.0时)。  相似文献   

13.
A detailed investigation of different scenarios of structural transformations of H2O Ih ice during compression to a pressure of 2 GPa in the temperature range from 77 to 200 K is performed. In the range of temperatures and pressures being treated, detailed data are obtained for the density and the shear modulus for different phases of ice including the hda, IX, and XII phases. The experimentally obtained correlations for the density and ultrasonic velocities, with due regard for the available data of structural investigations, are used to identify the transformation sequences Ih→hda (below 135 K), Ih→II→VI (above 165 K), and Ih→IX→VI (from 155 to 180 K). In the vicinity of the crystallization temperature of amorphous ice, i.e., at about 140 K, an anomalous transformation pattern is observed, which is interpreted as predominantly the Ih→XII phase transition. The temperature crossover is discussed between the mode of solid-phase amorphization (Ihhda) and crystal-crystal transitions, as well as the metastable nature of IX ice and the mechanism of solid-phase amorphization.  相似文献   

14.
We report results of molecular dynamics simulations of amorphous ice in the pressure range 0-22.5 kbar. The high-density amorphous (HDA) ice prepared by compression of Ih ice at T=80 K is annealed to T=170 K at intermediate pressures in order to generate relaxed states. We confirm the existence of recently observed phenomena, the very high-density amorphous ice, and a continuum of HDA forms. We suggest that both phenomena have their origin in the evolution of the network topology of the annealed HDA phase with decreasing volume, resulting at low temperatures in the metastability of a range of densities.  相似文献   

15.
Klotz S  Takemura K  Str?ssle T  Hansen T 《J Phys Condens Matter》2012,24(32):325103, 1-325103, 6
We investigated freezing of pure glycerol as well as glycerol-water (GW) mixtures with 3:1 and 3:2 volume fractions as a function of pressure in the 0-10?GPa range by ruby fluorescence spectroscopy and neutron scattering. We find that the glass transition pressure increases from 5.5?GPa for pure glycerol to 6.5?GPa for the 3:1?GW mixture, with unusually small pressure gradients above. For higher water concentrations close to 3:2, phase separation occurs above 2?GPa where most of the water is expelled in the form of ice VII. The results suggest that glycerol is able to effectively hydrogen bond not more than ≈2.5 H(2)O molecules per glycerol, which seems to support conclusions from molecular dynamics simulations. The data indicate that these fluids could become important as pressure transmitting media for neutron scattering in the 0-7?GPa range, including at low temperatures.  相似文献   

16.
胡光辉  李领伟 《中国物理 B》2016,25(6):67501-067501
We systematically investigate the effect of pressure on the magnetic properties of GdCo_2B_2 on the basis of alternating current(AC) susceptibility,AC heat capacity and electrical resistivity measurements under pressures up to 2.2 GPa.A detailed magnetic phase diagram under pressure is determined.GdCo_2B_2 exhibits three anomalies that apparently reflect magnetic phase transitions,respectively,at temperatures T_C= 20.5 K,T_1= 18.0 K and T_N= 11.5 K under ambient pressure.Under pressures up to 2.2 GPa,these anomalies are observed to slightly increase at T_Cand T_1,and they coincide with each other above 1.6 GPa.Conversely,they decrease at T_N and disappear under pressures higher than 1.4 GPa.The results indicate that the low-temperature magnetic phases can be easily suppressed by pressure.Moreover,the spin-glass-like behavior of GdCo_2B_2 is examined in terms of magnetization,aging effect and frequency dependence of AC susceptibility.A separation between the zero-field-cooled(ZFC) and field-cooled(FC) magnetization curves becomes evident at a low magnetic field of 0.001 T.A long-time relaxation behavior is observed at 4 K.The freezing temperature Tfincreases with frequency increasing.  相似文献   

17.
Louis Rey  José Teixeira 《Molecular physics》2013,111(23-24):2547-2550
This paper reports on a thermoluminescence study of D2O ice Ih. A sample of hexagonal (Ih) ice is irradiated by a 100 MeV X-ray source at 77 K. The emission spectrum that is measured immediately after the end of the irradiation process has the thermoluminescent behaviour of amorphous ice. The kinetic transition is followed to the stable form, taking place at 85 K. The relaxation time of the transition is of the order of 5 minutes. It is concluded that, due to irradiation, a few outer layers of ice Ih are converted to the low-density amorphous form of ice, which then converts to cubic ice. Although complex to quantify, thermoluminescence appears to be, in the present study, particularly sensitive to the time evolution of irradiated samples.  相似文献   

18.
苏昉  谢斌  沈保根 《物理学报》1994,43(8):1301-1310
在0.0001-2.4GPa流体静压力范围详细研究了非晶(Fe1-xCox)77.5Nd4B18.5(0≤x≤1.0)合金的电阻率与压力的关系,得到该非晶合金电阻率的压力系数随组分x变化的规律。结果表明:用少量的钴(x=0.2)替代铁,不会影响其硬磁性和热稳定性,同时却可减小电阻率的压力系数,从而增强电磁性能在压力下的稳定性。此外还观测到在0.51GPa保压3-24h的结构弛豫,进一步求出该非晶台金电阻率的压力弛豫时间对组分x的依赖关系。 关键词:  相似文献   

19.
The compression behaviour of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using in-situ high pressure energy dispersive x-ray diffraction with a synchrotron radiation source. The equation of state is determined by fitting the experimental data according to the Birch-Murnaghan equation. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 GPa. Within the pressure range from zero to the experimental one, the pressure-induced structural relaxation is reversible.  相似文献   

20.
Brillouin scattering measurements of a silicate glass, carried out at high pressures in the diamond anvil cell, show a dramatic increase in the pressure dependence of longitudinal velocity, and a discontinuity in the compressibility of the glass at about 6 GPa. While a first-order phase transition has been documented under pressure within amorphous ice, we demonstrate that an apparent second-order transition to a new, structurally distinct amorphous phase can occur via the abrupt onset of a new compressional mechanism, which may be triggered by a shift in polymerization of the glass or an onset of a change in coordination of silicon, within pressurized amorphous silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号