首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning tunneling and Auger spectroscopy were used to study the formation of silver nanostructures at room temperature on a Si(557) surface containing regular atomic steps with a height of three interplanar spacings. The shape of silver islands formed on the surface was found to be affected by oxygen adsorbed on the silicon surface from the residual atmosphere in a vacuum chamber. Depending on the amount of adsorbed oxygen, silver nanostructures can be obtained in the form of nanowires extended along the edges of steps or nanodots ordered in lines parallel to these edges.  相似文献   

2.
The structure of the Au/Si(557) surface is determined from three-dimensional x-ray diffraction measurements, which directly mandate a single Au atom per unit cell. We use a "heavy atom" method in which the Au atom images the rest of the structure. Au is found to substitute for a row of first-layer Si atoms in the middle of the terrace, which then reconstructs by step rebonding and adatoms. The structure is consistent with the 1D metallic behavior seen by photoemission.  相似文献   

3.
4.
The formation of Mg-induced quasi-one-dimensional atomic wires on a Si(557) surface was studied by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and first-principles calculations. The atomic wires were produced on the Si(557) surface without faceting when heated to 330 ?C. The atomic wires had a × 5 period along the wires, as observed by LEED. STM images showed the existence of three kinds of atomic wires in a unit cell: an atomic wire located at the step edge and the others on the terrace. Interestingly, alternative double and triple modulations resulting in the × 5 period was observed at the atomic wire located at the step edge. Among the variety of atomic structure models available, the one based on a honeycomb-chain-channel model, which is that of a metal/Si(111)-(3 × 1) surface, reproduced the STM images well and was relatively stable energetically.  相似文献   

5.
An exposition of some methods of proving exponential (stretched exponential) decay of correlations is given. One-dimensional strictly hyperbolic and quadratic maps and two-dimensional piecewise smooth, uniformly hyperbolic maps are considered. The emphasis is on the fundamental constructions of the Markov sieve method due to Bunimovich-Chernov-Sinai and those of Liverani's Hilbert metric method.  相似文献   

6.
Our ab initio calculations show that spin-orbit coupling is crucial to understand the electronic structure of the Si(557)-Au surface. The spin-orbit splitting produces the two one-dimensional bands observed in photoemission, which were previously attributed to spin-charge separation in a Luttinger liquid. This spin splitting might have relevance for future device applications. We also show that the apparent Peierls-like transition observed in this surface by scanning tunneling microscopy is a result of the dynamical fluctuations of the step-edge structure which are quenched as the temperature is decreased.  相似文献   

7.
8.
9.
《Surface science》1995,328(3):L547-L552
Real-time observation by high-temperature scanning tunneling microscopy of exchanges between Si and Pb atoms on a Si(111)-√3 × √3 surface is reported. The exchange rate is obtained as a function of the temperature. The activation energy of the exchange is about 1.2 eV, and the prefactor, shown to depend on the Pb coverage, is from 2 × 1010 to 8 × 1011 s−1. This prefactor is much larger than that for the exchange between Pb and Ge adatoms on a Ge(111)-c(2 × 8) surface, indicating that the adatom arrangement greatly influences the exchange mechanism. We also report that metastable 9 × 9 reconstruction appears during Pb desorption.  相似文献   

10.
《Surface science》1994,314(3):L884-L888
The morphology and the electronic structure of heteroepitaxial germanium layers grown pseudomorphically by solution epitaxy on Si(001) has been investigated by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). A significant decrease of tunneling current at a sample voltage of 1.5 V is observed in areas of 0.5 nm diameter between dimer rows. This decrease is due to a negative-differential conductivity at a tunnel diode configuration consisting of a surface defect structure of the germanium layer and the STM tungsten tip.  相似文献   

11.
We present measurements of the Fermi surface and underlying band structure of a single layer of indium on Si(111) with square root 7 x square root 3 periodicity. Electrons from both indium valence electrons and silicon dangling bonds contribute to a nearly free, two-dimensional metal on a pseudo-4-fold lattice, which is almost completely decoupled at the Fermi level from the underlying hexagonal silicon lattice. The mean free path inferred from our data is quite long, suggesting the system might be a suitable model for studying the ground state of two-dimensional metals.  相似文献   

12.
We describe a two-dimensional (2D) and a three-dimensional (3D) percolation model for ionic conductor-insulator composites such as copper(I) bromide-titanium dioxide (CuBr-TiO2) or lithium iodide-alumina (LiI-Al2O3). These composites present an enhanced conductivity closely related to the insulator concentration. This effect is explained by the formation of highly conducting space charge regions near the phase boundaries which are represented by good conductor bonds. Our numerical model takes into account grain size and correlation effects. The dimension has a leading role for the conduction properties. In the 2D case, the good conductor bonds do not percolate, whatever the insulator concentration, and the maximum conductivity of the composite samples is of the same order as that of the ionic conductor grains. The behavior of the system is very different in the 3D case where, for a large domain of composition, the good conductors percolate through the regions between the conductor grains. For the CuBr-TiO2 composites the conductivity versus composition curve is bell-shaped. Conversely, in the LiI-Al2O3 system, a linear relation between the conductivity and the insulator volume fraction is obtained in the experiments. Our model gives a plausible interpretation of the conductivity in both systems. Received 10 April 2001  相似文献   

13.
We report the results of STM investigation of the initial stage of Ag adsorption on an Si(110) surface. At 0.21 ML Ag coverage, the size and orientation of the unit cell correspond to the parameters of a 16 × 2 unit cell of clean Si(110) surface. With increasing of the Ag coverage up to 0.42 ML, the type of surface reconstruction changes to a 4 × 1-Si(110)-Ag structure. The text was submitted by the authors in English.  相似文献   

14.
K. Tagami  M. Tsukada 《Surface science》1998,400(1-3):383-386
From several large supercell MD simulations with an empirical tight-binding method, we have found the long-range structure on the dihydride Si(001) surface. This structure can be viewed as the well-known canted phase with domain walls. The formation energy of a single domain wall on the surface is estimated to be 1.3–1.5 eV.  相似文献   

15.
16.
17.
A new numerical method is used to study the ground-state properties of the spinless Falicov-Kimball model in one and two dimensions. The resultant solutions are used to examine the phase diagram of the model as well as possibilities for valence and metal-insulator transitions. In one dimension a comprehensive phase diagram of the model is presented. On the base of this phase diagram, the complete picture of valence and metal-insulator transitions is discussed. In two dimensions the structure of ground-state configurations is described for intermediate interactions between f and d electrons. In this region the phase separation and metal-insulator transitions are found at low f-electron concentrations. It is shown that valence transitions exhibit a staircase structure. Received 20 October 2000  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号