首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The properties of dust–ion acoustic (DIA) shock wave in a dusty plasma containing positive and negative ions is investigated. The reductive perturbation method has been used to derive the Korteweg–de Vries–Burgers equation for dust acoustic shock waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are Boltzmann distributed electrons, singly charged positive ions, singly charged negative ions and cold static dust particles. The KdV–Burgers equation is derived and its stationary analytical solution is numerically analyzed where the effect of viscosity on the DIA shock wave propagation is taken into account. It is found that the viscosity in the dusty plasma plays as a key role in dissipation for the propagation of DIA shock.  相似文献   

2.
The nonlinear dust‐ion‐acoustic (DIA) solitary structures have been studied in a dusty plasma, including the Cairns‐Gurevich distribution for electrons, both negative and positive ions, and immobile opposite polarity dust grains. The external magnetic field directed along the z‐axis is considered. By using the standard reductive perturbation technique and the hydrodynamics model for the ion fluid, the modified Zakharov–Kuznetsov equation was derived for small but finite amplitude waves and was provided the solitary wave solution for the parameters relevant. Using the appropriate independent variable, we could find the modified Korteweg–de Vries equation. By plotting some figures, we have discussed and emphasized how the different plasma values, such as the trapping parameter, the positive (or negative) dust number density, the non‐thermal electron parameter, and the ion cyclotron frequency, can influence the solitary wave structures. In addition, using the bifurcation theory of planar dynamical systems, we have extracted the centre and saddle points and illustrated the phase portrait of such a system for some particular plasma parameters. Finally, we have graphically investigated the behaviour of the solitary energy wave by changing the plasma values as well as by calculating the instability criterion; we have also discussed the growth rate of the solitary waves. The results could be useful for studying the physical mechanism of nonlinear propagation of DIA solitary waves in laboratory and space plasmas where non‐thermal electrons, pair‐ions, and dust particles can exist.  相似文献   

3.
A N Dev  M K Deka  J Sarma  D Saikia  N C Adhikary 《中国物理 B》2016,25(10):105202-105202
The stationary solution is obtained for the K–P–Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev–Petviashvili(K–P) equation, threedimensional(3D) Burgers equation, and K–P–Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave(DIASW). The K–P equation predictes the existences of stationary small amplitude solitary wave,whereas the K–P–Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.  相似文献   

4.
Using a reductive perturbation technique (RPT), the Korteweg‐de Vries (KdV) equation for nonlinear electrostatic waves in multi‐ion plasmas is derived with appropriate boundary conditions. Furthermore, compressive and rarefactive cnoidal wave and soliton solutions are discussed. In our model, the multi‐ion plasma consists of light dynamic warm ions, heavy cold ions, and inertialess electrons, which follows the Maxwell‐Boltzmann distribution. It is observed that in such an unmagnetized multi‐ion plasma, two characteristic electrostatic waves i.e., slow ion‐acoustic (SIA) waves and fast ion‐acoustic (FIA) waves, can propagate. The results are discussed by considering two types of multi‐ion plasmas i.e., H+–O+–e plasma and H?–O+–e plasma that exist in space plasmas. It is found that for H+–O+–e plasma, the SIA cnoidal wave and soliton form both positive (compressive) and negative (rarefactive) potential pulses, which depend on the temperature and density of the light and warm ions. However, only electrostatic positive potential structures are obtained for FIA cnoidal wave and soliton in H+–O+–e plasma. In the case of H?–O+–e plasma, the SIA cnoidal wave and soliton form only compressive structures, while the FIA cnoidal wave and soliton compose rarefactive structures. The effects of light ions' density and temperature on nonlinear potential structures are investigated in detail. The parametric results are also demonstrated, which are applicable to space and laboratory multi‐ion plasma situations.  相似文献   

5.
Experimental results that illustrate some properties of the radiation of a longitudinal ion acoustic wave launched from a solid metal disk antenna inserted in a dispersive positive-ion-negative-ion plasma are presented. The negative ions replace the free electrons in the plasma and increase the electron Debye length, hence increasing the dispersion of the plasma. It is observed that the radiation of waves in a dispersive media is significantly more complicated than in a nondispersive media. It is not possible to draw one universal radiation pattern for the radiation of the waves in this case, since so many frequency components are present in the wave and they change as the wave evolves  相似文献   

6.
刘铁路  王云良  路彦珍 《中国物理 B》2015,24(2):25202-025202
The nonlinear propagation of quantum ion acoustic wave(QIAW) is investigated in a four-component plasma composed of warm classical positive ions and negative ions,as well as inertialess relativistically degenerate electrons and positrons.A nonlinear Schrodinger equation is derived by using the reductive perturbation method,which governs the dynamics of QIAW packets.The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf.The results exhibit that both in the weakly relativistic limit and in the ultrarelativistic limit,the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively,and on the relativistically degenerate effect as well.  相似文献   

7.
From numerical simulation and analytical modeling it is shown that fast ions can resonate with plasma waves at fractional values of the particle drift-orbit transit frequency when the plasma wave amplitude is sufficiently large. The fractional resonances, which are caused by a nonlinear interaction between the particle orbit and the wave, give rise to an increased density of resonances in phase space which reduces the threshold for stochastic transport. The effects of the fractional resonances on spatial and energy transport are illustrated for an energetic particle geodesic acoustic mode but they apply equally well to other types of MHD activity.  相似文献   

8.
If a large negative voltage is applied to an insulated disc inserted in a collision-dominated plasma, the electrons are expelled from the region near the disc leaving a bare cloud of ions. This "transient sheath" is well documented in ion acoustic wave experiments. This paper examines the evolution of the ions in this sheath into a collision-dominated plasma. A new sheath whose dimension is of the order of twice the transient sheath dimension if found.  相似文献   

9.
The electrostatic double layer (DL) structures are studied in negative ion plasma with nonextensive electrons q-distribution. The extended Korteweg–de Vries (EKdV) equation is derived using a reductive perturbation method. It is found that both fast (compressive) and slow (rarefactive) ion acoustic (IA) DLs can propagate in such type of plasmas. The effects of various plasma physical parameters; such as nonextensivity of electrons, presence of negative ions, temperature of both positive and negative ions and different mass ratios of positive to negative ions on the formation of DL structures are discussed in detail with numerical illustrations.  相似文献   

10.
An investigation of the linear and non‐linear properties of low‐frequency electrostatic (dust acoustic) waves in a collisional dusty plasma with negative dust grains, Maxwellian electrons, and κ ‐distributed ions is carried out. Low dust–neutral collisions accounting for dissipation (wave damping effect) is considered. The linear properties of dust acoustic excitations are discussed for varying values of relevant plasma parameters. It is shown that large wavelengths (beyond a critical value) are overdamped. In the limit of low dust–neutral collision rate, we have derived a damped Korteweg de Vries (KdV) equation by using the reductive perturbation technique. Supplemented by vanishing boundary conditions, the time‐varying solution of damped KdV equation leads to a weakly dissipative negative potential soliton. The soliton evolution with the damping parameter and other physical plasma parameters (superthermality, dust concentration, ion temperature) is delineated.  相似文献   

11.
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.  相似文献   

12.
A microwave diagnostic method is developed to study the amplitude variations of electron density and collision frequency and the phase difference between these two variables in a weakly-ionized gaseous plasma. The method is utilized to study the perturbations of a nitrogen positive column through which an acoustic wave is propagating.  相似文献   

13.
We study the nonlinear propagation of dust-ion acoustic (DIA) shock waves in an un-magnetized dusty plasma which consists of electrons, both positive and negative ions and negatively charged immobile dust grains. Starting from a set of hydrodynamic equations with the ion thermal pressures and ion kinematic viscosities included, and using a standard reductive perturbation method, the Kadomtsev-Petviashivili-Burgers (K-P-Burgers) equation is derived, which governs the evolution of DIA shocks. A stationary solution of the K-P-Burgers equation is obtained and its properties are analysed with different plasma number densities, ion temperatures and masses. It is shown that a transition from shocks with negative potential to positive one occurs depending on the negative ion concentration in the plasma and the obliqueness of propagation of DIA waves.  相似文献   

14.
ABSTRACT

In framework of the extended Poincaré–Lighthill–Kuo, the properties of dust acoustic (DA) solitary wave’s interaction are investigated in four-component quantum dusty plasma. Two Korteweg–de Vries equations describing the colliding DA solitary waves are derived by eliminating the secularities. By knowing the explicit form of the solitary wave solutions, the leading phase changes, trajectories and phase shifts are obtained, accordingly. The effects of various physical parameters such as the quantum mechanical parameters, the charge ratio between positive and negative dust particles, the mass ratio between negative and positive dust particles and the ratio of electron to ion temperatures are studied extensively. Our findings showed that these parameters play a significant role on the characteristics and basic features of DA solitary waves such as phase shifts in trajectories due to collision. The obtained results may be beneficial to understand well the collision of DA solitary waves that may occur in laboratory plasmas, space plasma as well as in plasma applications.  相似文献   

15.
Using the extended Poincaré-Lighthill-Kuo (EPLK) method, the interaction between two ion acoustic solitary waves (IASWs) in a multicomponent magnetized plasma (including Tsallis nonextensive electrons) has been theoretically investigated. The analytical phase shifts of the two solitary waves after interaction are estimated. The proposed model leads to rarefactive solitons only. The effects of colliding angle, ratio of number densities of (positive/negative) ions species to the density of nonextensive electrons, ion-to-electron temperature ratio, mass ratio of the negative-to-positive ions and the electron nonextensive parameter on the phase shifts are investigated numerically. The present results show that these parameters have strong effects on the phase shifts and trajectories of the two IASWs after collision. Evidently, this model is helpful for interpreting the propagation and the oblique collision of IASWs in magnetized multicomponent plasma experiments and space observations.  相似文献   

16.
Ion-ion plasmas can form in the late afterglow of pulsed discharges or downstream of continuous wave discharges in electronegative gases. In ion-ion plasmas, negative ions replace electrons as the negative charge carriers. In the absence of electrons, ion-ion plasmas behave quite differently compared to conventional electron-ion plasmas. Application of a radio frequency bias to a substrate immersed in an ion-ion plasma can be used to extract alternately positive and negative ions, thereby minimizing charging on device features during micro-device fabrication. Ion-ion plasmas are also important in negative ion sources, dusty plasmas, and the D-layer of the earth's atmosphere.  相似文献   

17.
A theoretical investigation on amplification of electrostatic ion acoustic wave in magnetically confined plasma has been presented in this paper. This investigation considers nonlinear wave–particle interaction process, called plasma maser effect, in presence of drift wave turbulence supported by magnetically confined inhomogeneous plasma. The role of associated nonlinear dissipative force in this effect in a confined plasma has been analyzed. The nonlinear force, which arises as a result of resonant interaction between electrons and modulated fields, is shown to drive the instability. Using the ion fluid equation and the ion equation of continuity, the nonlinear dispersion relation of a test ion acoustic wave has been derived, and the growth rate of ion acoustic wave in presence of low frequency drift wave turbulence has been estimated using Helimak data.  相似文献   

18.
The dynamic nature of the ion wake formed downstream a dust particle immersed in a plasma with flowing ions has been investigated via Particle-in-Cell simulation. It is found that the wake oscillates in time and the motion is characterized by some dominant frequencies. By means of signal processing analysis, three harmonics are detected (two at low frequencies and one at high frequencies) and compared to the characteristic plasma frequencies given by the dispersion relations for ions and electrons. Good matching is found between the high frequency harmonic and the electron plasma frequency, and between the low frequency harmonics and the ion acoustic and ion plasma frequencies.  相似文献   

19.
Using the fluid model for the nonlinear response of ions, we have studied the nonlinear scattering of an electromagnetic ion cyclotron wave off the ion acoustic wave in a plasma. The low frequency nonlinearity arises through the parallel ponderomotive force on ions and the high frequency nonlinearity arises through the nonlinear current density of ions. For a typical nonisothermal plasma (T e/T i∼10) the threshold for this instability in a uniform plasma is ∼1mW/cm2. At power densities ≳102 W/cm2, the growth rate for backscatter turns out to be ∼104s−1.  相似文献   

20.
《Physics letters. A》2006,349(6):500-504
The electron–positron pair annihilation effects on the dust ion acoustic surface wave are investigated in semi-bounded magnetized electron–positron–ion–dust plasmas. The dispersion relation of the low frequency dust ion acoustic surface wave is obtained by the plasma dielectric function with the specular reflection boundary condition. The results show that the frequency of the dust ion acoustic surface wave is found to be increased with increasing the annihilation of the electron–positron pair. In addition, the group velocity of the dust ion acoustic surface wave is also found to be increased with the annihilation of the electron–positron pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号