首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.  相似文献   

2.
We review the polarization properties of photoluminescence (PL) in nanocrystals (NCs) from both theoretical and experimental points of view. We show that, under linearly polarized excitation, NCs emit partly polarized light owing to their uniaxial structure or their anisotropic shape. In elongated NCs, the anisotropy may have two origins, the electronic confinement or the effect of depolarizing field created by the light-induced charges on the interfaces. Results of polarization studies in porous silicon are presented. They are explained by the shape of the Si NCs. Experiments in CdSe NCs reveal the fine structure of the excitonic levels and show evidence of the enhancement of the electron-hole exchange energy with decreasing NC size. Spin orientation in wurtzite-type NCs is achieved by optical pumping with circularly polarized light. The effect of a magnetic field on the degree of circular polarization and the mechanisms of spin relaxation are discussed. Results in large-size NCs are presented.  相似文献   

3.
利用有机相法合成Nd3+掺杂CdSe纳米晶(CdSe∶Nd),通过X射线粉末衍射(XRD)、透射电镜(TEM)、紫外吸收光光谱及荧光光谱表征,证明Nd3+已经成功掺入到CdSe的晶格中。与纯CdSe纳米晶相比,CdSe∶Nd纳米晶的结构仍为立方晶型,且形貌近似球形,均匀分散,粒径约为2~4 nm。紫外吸收峰和荧光发射峰都发生红移,而且掺杂后的CdSe∶Nd纳米晶量子产率也提高,这可能是由于掺杂Nd3+引入了新的杂质能级,带隙减小。为了实现CdSe∶Nd纳米晶的可加工性和功能性,通过微乳法合成SiO2壳包覆的CdSe∶Nd纳米球(CdSe∶Nd@SiO2纳米球),CdSe∶Nd@SiO2纳米球呈均匀球形,直径约为100~115 nm,并且包壳后的CdSe∶Nd@SiO2纳米球发射峰(581 nm)与CdSe∶Nd纳米晶(598 nm)相比,发光强度提高且发射峰蓝移,蓝移约为17 nm,可能是因为SiO2壳可以减少纳米晶表面的非辐射跃迁以及改善表面缺陷导致的。  相似文献   

4.
This work gives the evidence of the lattice contraction in CdSe nanocrystals (NCs) grown in a glass matrix. The CdSe NCs were investigated by atomic force microscopy (AFM), optical absorption (OA), and Raman spectroscopy. The average size of CdSe NCs can be estimated by AFM images. Using the OA spectra and the effective‐mass approximation, it was also possible to estimate the average sizes of CdSe NCs, which agree very well with the AFM data. These results showed that the CdSe NCs grow with increasing time of heat treatment. The blue shift of the longitudinal optical (LO) modes and surface optical (SO) phonon modes with an increase in the average radius of the NCs, shown in the Raman spectra, was explained by the lattice contraction in CdSe NCs caused by thermodynamic interactions at the interface with the host glass matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
《Physics Reports》1999,321(6):253-305
Infrared spectroscopy on ultrafast time scales represents a powerful technique to investigate the nonequilibrium dynamics of elementary excitations in bulk and nanostructured semiconductors. In this article, recent progress in this field is reviewed. After a brief introduction into electronic excitations below the fundamental bandgap and ultrafast processes in semiconductors, infrared pulse generation and the methodology of time-resolved infrared spectroscopy are reviewed. The main part of this paper is devoted to coherent optical polarizations and nonequilibrium excitations of the electronic system in the spectral range below the fundamental band gap. The focus is on the physics of single component plasmas, i.e. electrons or holes. In particular, intraband, inter-valence and intersubband transitions are considered. Processes of phase relaxation, carrier and energy redistribution are analyzed. The potential of ultrafast infrared technology and spectroscopy for future applications is discussed in the final part.  相似文献   

6.
In this work, CdSe nanocrystals (NCs) embedded in SiO2 matrix were grown by radio frequency (RF)-sputtering technique. X-ray technique was used to characterise the structural properties of the system. The NC's size was estimated to be around 4±1 nm in diameter. The temperature dependence of the photoluminescence from the CdSe/SiO2 system showed carriers thermal exchange between the NCs and deep defects in the matrix. The evolution of the excitonic energy emission with temperature is about 10 meV in the temperature range 15-295 K. This weak shift was explained by thermal mismatch between the matrix and the NCs.  相似文献   

7.
Microreactor systems existed as a powerful tool for the continuous synthesis of quantum dots. However, the lack of structure optimization for the discrete units led to empirical determination of the length scale, and the properties of the formed products varied in different cases. In this article, the optimizations for the micromixer volume and capillary diameter were presented based on the synthesis of CdSe nanocrystals (NCs). Spectra investigation revealed that the application of a small convective mixer of 36 μL led to 1/3 increase of CdSe concentration in the crude solution. The enhanced mixing of the precursors in this case was also demonstrated favorable to achieve CdSe NCs with narrow PL width. Fast heating and uniform reaction condition achieved in a narrow channel favored the preparation of high quality CdSe NCs under short residence time. However, the application of wide channel did not necessarily result in CdSe NCs with poor quality. Here, we demonstrated that high-quality CdSe NCs with narrow full width at half maximum (FWHM) as 32 nm and high quantum yield (QY) 34.7% could be prepared using an 844 μm inner diameter capillary. Based on the obtained results, the scaled-up synthesis of CdSe NCs was demonstrated, and a high quantity of 0.8 g dry CdSe NCs powder (3.5 nm, σ ~ 8.2%) was obtained within 1 h.  相似文献   

8.
A theoretical study of different ultrafast nonequilibrium processes taking place during and after ultrashort excitation of clusters is presented. We discuss similarities and differences for several processes involving nonequilibrium ultrafast motion of atoms and electrons. We study ultrashort relaxation of clusters in response to excitations produced by femtosecond laser pulses of different intensities. We show how different relaxation processes, such as bond breaking, melting, fragmentation, emission of atoms, or Coulomb explosion, can be induced, depending on the laser intensity and laser pulse duration. We also discuss processes involving nonequilibrium electron dynamics, such as intraband Auger decay in clusters and ultrafast electronic motion during collisions between clusters and surfaces. We show that this electron dynamics leads to Stückelberg-like oscillations of measurable quantities, such as the electron emission yield. Received: 4 April 2000 / Accepted: 6 November 2000 / Published online: 9 February 2001  相似文献   

9.
We present a comprehensive study of ultrafast relaxation properties of optical excitations in thin films of quasi-1D stacked organic materials PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) and MePTCDI (N,N'-dimethylperylene-3,4,9,10-dicarboximide) over five decades of time. Pump-probe experiments reveal excitonic intraband relaxation time constants of 65 fs for MePTCDI and 100 fs for PTCDA. The initial time-resolved luminescence anisotropy is consistent with the exciton model of Davydov-split states. The subsequent decay of the anisotropy can be explained with a thermally activated exciton hopping process. A full understanding of the pump-probe experiments calls for an explanation beyond the models presently available.  相似文献   

10.
半导体纳米晶体(NCs)具有良好的光稳定性,广泛的发射持久性和高消光系数,在过去几年被广泛研究报道,其中,硒化镉半导体纳米晶体(CdSe NCs)被广泛用于电子照明、太阳能发电、光电传感等领域。然而CdSe NCs的电学、热力学和光物理性质具有较强的尺寸依赖性,在传统的制备方法及应用中容易出现晶体表面缺陷和悬空键以及较为严重的生物毒性和环境毒性。为了实现量子点在各个领域的应用,必须严格控制CdSe NCs的发光波长,尺寸分布以及荧光性能。本研究通过高温热注射法合成了单分散的胶体发光CdSe NCs,使用表面配体对CdSe NCs进行修饰,研究了不同烷基链长度的配体对CdSe NCs尺寸分布和荧光性能的影响,并通过改变溶剂配比制备了纺丝溶液,将其与聚乙烯吡咯烷酮(PVP)进行杂化,制备了PVP/CdSe QDs荧光杂化纤维。结果表明,与传统CdSe NCs相比,经表面配体的修饰的CdSe NCs在有机溶液中因分子间吸附的降低在溶液中有良好的稳定性,具有可调节的溶解度,弥补了缺陷和悬空键造成的荧光性能下降。在CdSe晶体结构的形成过程中,表面配体也有着显著的调控作用。并且更为重要的是,该研究将表面配体修饰与杂化相结合,改善了表面配体的附着,在杂化材料的制备过程中避免了硒化镉纳米晶体与高分子基体直接接触,为荧光团提供了良好的发光微环境,保证了CdSe NCs的荧光性能,使杂化纤维具有良好而稳定的荧光性能。同时,PVP的引入使CdSe NCs的生物毒性和环境毒性得以改善,使材料更加环境友好且具有更好的生物相容性,大大提升了材料的应用范围。事实证明,PVP/CdSe QDs杂化微纤维杂化相容性和分散性良好,具有优异的荧光性能和材料成型性,纤维合成方式简便易行且造价低廉,可应用于溶液处理,光学照明,电极材料,和生物成像等各个领域。  相似文献   

11.
A small quantity of tributylphosphine was employed to improve the surface state of fresh and oxidized PbSe nanocrystals after the formation of nanocrystals. Experimental results showed that the photoluminescence intensity increased in both situations. However, an excessive amount of tributylphosphine exhibited negative effects of decreasing photoluminescence and particle aggregation. A suitable amount of tributylphosphine added before the synthesis of a CdSe shell on PbSe core (PbSe/CdSe) also exhibited a photoluminescence intensity increase for these core/shell nanocrystals.  相似文献   

12.
Europium ion-doped CdSe hybrid nanocrystals (CdSe:Eu3+ NCs) as a class of new luminescent materials have drawn increasing attention in recent years owing to their remarkable optical properties. In this paper, we report a facile method to prepare CdSe:Eu3+ NCs using oleic acid (OA) as the capping agent. With this non-injection and one-pot synthesized approach, the formation and surface passivation of CdSe:Eu3+ NCs are performed simultaneously and result in intrinsic luminescence. The as-prepared CdSe:Eu3+ NCs are characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy (EDX). Their optical properties are also studied by UV–vis and photoluminescence spectra. Moreover, the effects of feed ratios and reaction temperatures on the optical properties are further investigated. The results show that the luminescent spectra of CdSe:Eu3+ NCs are tunable from green (490 nm) to red (630 nm) and gradually redshift with the increase of the nanoparticle size from 2.5 to 4.4 nm. Upon decoration with 2-thenoyltrifluoroacetone (TTA), the luminescence of europium ion drastically increases and efficient energy transfer from CdSe host to the europium ion is proposed. In addition, an MTT and apoptosis assay show CdSe:Eu3+ NCs have low cellular toxicity and could be used as fluorescence imaging for human epithelial type 2 (Hep-2) cells. These properties make CdSe:Eu3+ NCs a potential candidate for biological labeling, immunoassays, and optical sensing.
Graphical abstract Stable and luminescent CdSe:Eu3+ hybrid nanocrystals were synthesized, and the luminescence is tunable from green to red by the variation of reaction temperatures and feed ratios. Moreover, CdSe:Eu3+ NCs show low cellular toxicity and could be used as fluorescence probes for Hep-2 cells.
  相似文献   

13.
This Letter reports on the fabrication of hybrid white-light-emitting diodes made of semiconductor nanocrystals (NCs) integrated on InGaN/GaN LEDs. Using core type and core/shell type CdSe NCs, the white light properties are systematically engineered for white light generation with high color rendering index (CRI). Unlike CdSe/ZnS core/shell NCs, which exhibited a unique narrowband edge emission, core type CdSe NCs offered extended broad emission toward orange/red wavelengths associated with deep trap states. Consequently, the light-emitting properties of the devices showed strong dependence on the type of NCs used, and devices with CdSe NCs offered admirable characteristics, such as Commission Internationale d'Eclairage coordinates of (0.356, 0.330) and a CRI as high as 87.4.  相似文献   

14.
利用飞秒泵浦探测技术对CdSe/CdS/ZnS量子点体系中的超快载流子动力学过程进行了研究. 通过选择不同波长的泵浦光分别激发样品壳层和核层,研究了载流子在壳层和核层中的超快动力学过程. 实验结果表明,载流子在CdS壳层导带中弛豫过程非常迅速(约130 fs),时间明显短于载流子在CdSe核层导带中的弛豫时间(约400 fs). 实验中也发现在CdS壳层和CdSe核层的分界面存在一定量的缺陷态.  相似文献   

15.
Surface-enhanced emission from single semiconductor nanocrystals   总被引:1,自引:0,他引:1  
The fluorescence behavior of single CdSe(ZnS) core-shell nanocrystal (NC) quantum dots is dramatically affected by electromagnetic interactions with a rough metal film. Observed changes include a fivefold increase in the observed fluorescence intensity of single NCs, a striking reduction in their fluorescence blinking behavior, complete conversion of the emission polarization to linear, and single NC exciton lifetimes that are >10(3) times faster. The enhanced excited state decay process for NCs coupled to rough metal substrates effectively competes with the Auger relaxation process, allowing us to observe both charged and neutral exciton emission from these NC quantum dots.  相似文献   

16.
We perform for the first time photoluminescence excitation (PLE) studies of individual nanocrystals (NCs) that reveal the structure of excited-state transitions not obscured by ensemble averaging. Single-NC PLE spectra strongly deviate from a traditional idealized picture of sharp, quasiatomic resonances. We detect only a few relatively narrow transitions (3-4 meV) at the band edge, while at higher spectral energies, we observe a broad structureless feature separated from the band-edge peaks by a >50 meV "minigap." These observations can be rationalized by analyzing hole intraband relaxation behavior.  相似文献   

17.
Electroluminescence from single CdSe nanocrystals (NCs) excited by tunneling current of scanning tunneling microscope (STM) has been measured. Two types of samples with low and high concentration of CdSe NCs deposited on the gold substrate have been prepared. Both types of samples had no plasmon emission. It enabled one to detect pure electroluminescence from single CdSe NCs. Samples with low concentration of NCs exhibit an intensive short-term luminescence of NCs for several seconds. Samples with high concentration of NCs exhibit a weak fluctuating long-term luminescence for thousand seconds. Fluctuations of NC electroluminescence differ considerably from those detected recently in photoluminescence of CdSe NCs embedded in polymer films. The difference in fluctuations results from the difference in physical conditions existing in electro- and photoluminescence. The distribution of photons w(N, T) emitted in time interval T has been found from statistical treating of fluctuating luminescence. Due to weakness of the pure signal, we paid a special attention to allowing for photomultiplier tube noise while treating these fluctuations. The photon distribution in pure signal is one of super-Poisson type, i.e. it is broader than Poisson distribution. A dynamical model for an absorber–emitter excited by tunneling current of STM has been offered. The model takes into account the thermal drift of STM tip.  相似文献   

18.
19.
We report on band-dependent quasiparticle dynamics in the hole-doped Ba-122 pnictides measured by ultrafast pump-probe spectroscopy. In the superconducting state of the optimal and over hole-doped samples, we observe two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component whose relaxation is independent of excitation strength. We argue that these two components reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature in all samples. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands.  相似文献   

20.
The effect of magnetic field on electron energy spectrum, wave functions and probabilities of intraband quantum transitions in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. The wave functions are expanded over the complete basis of functions obtained as exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field.It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and changes the localization of electron in the nanostructure. The field stronger effects on the spherically-symmetric states, especially in the case of electron location in the outer potential well. The magnetic field changes more the radial distribution of probability of electron location in QDQW than the angular one. The oscillator strengths of intraband quantum transitions are calculated as functions of the magnetic field induction and their selection rules are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号